• 제목/요약/키워드: environmental fatigue evaluation

검색결과 78건 처리시간 0.028초

열성층을 포함하는 원자력발전소 배관의 환경피로평가 (Environmental Fatigue Evaluation for Thermal Stratification Piping of Nuclear Power Plants)

  • 김태순;김규형
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.164-169
    • /
    • 2018
  • A detailed fatigue evaluation procedure was developed to mitigate the excessive conservativeness of the conventional environmental fatigue evaluation method for the pressurizer spray line elbow of domestic new nuclear power plants. The pressurizer spray line is made of austenitic stainless steel, which is relatively sensitive to the environmentally assisted fatigue, and has a low degree of design margin in terms of environmentally assisted fatigue due to the thermal stratification phenomenon on the pipe cross section as a whole or locally. In this study, to meet the environmental fatigue design requirements of the pressurizer spray line elbow, the new environmental fatigue evaluation has been performed, which used the ASME Code NB-3200-based detailed fatigue analysis and the environmental fatigue correction factor instead of the existing NB-3600 evaluation method. As a result, the design requirements for environmentally assisted fatigue were met in all parts of the pressurizer spray line elbow including the fatigue weakened zones by thermal stratification.

가압기 밀림관 환경피로평가를 위한 피로보정계수 적용에 관한 연구 (A Study on Application of Fatigue Correction Factor for Environmental Fatigue Evaluation of Pressurizer Surge Line)

  • 양준석;박치용;강선예
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1151-1157
    • /
    • 2009
  • Nuclear power plants applying for the continued operation over design life are required to address the effects of reactor water environment in fatigue design requirement of the ASME Code. Reactor water environmental effects are generally evaluated by calculating fatigue correction factors on fatigue usage. This paper describes the application for pressurizer surge line of environmental fatigue correction factors and the strain rate impact in the application. From this paper, the environmental fatigue correction factors resulted from the assumption of a step change in temperature are especially compared with those calculated from the data measured during plant startup. As a conclusion of this paper, the design transient conditions applied to the fatigue design may be conservative in case of the environmental fatigue evaluation.

Noncontact Fatigue Crack Evaluation Using Thermoelastic Images

  • Kim, Ji-Min;An, Yun-Kyu;Sohn, Hoon
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.686-695
    • /
    • 2012
  • This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack-tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog-bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

열성층 및 냉각재 환경이 오스테나이트 배관의 피로수명에 미치는 영향 평가 (Evaluation of Thermal Stratification and Primary Water Environment Effects on Fatigue Life of Austenitic Piping)

  • 최신범;우승완;장윤석;최재붕;김영진;이진호;정해동
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.660-667
    • /
    • 2008
  • During the last two decades, lots of efforts have been devoted to resolve thermal stratification phenomenon and primary water environment issues. While several effective methods were proposed especially in related to thermally stratified flow analyses and corrosive material resistance experiments, however, lack of details on specific stress and fatigue evaluation make it difficult to quantify structural behaviors. In the present work, effects of the thermal stratification and primary water are numerically examined from a structural integrity point of view. First, a representative austenitic nuclear piping is selected and its stress components at critical locations are calculated in use of four stratified temperature inputs and eight transient conditions. Subsequently, both metal and environmental fatigue usage factors of the piping are determined by manipulating the stress components in accordance with NUREG/CR-5704 as well as ASME B&PV Codes. Key findings from the fatigue evaluation with applicability of pipe and three-dimensional solid finite elements are fully discussed and a recommendation for realistic evaluation is suggested.

A Methodology for Fatigue Reliability Assessment Considering Stress Range Distribution Truncation

  • Park, Jun Yong;Park, Yeun Chul;Kim, Ho-Kyung
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1242-1251
    • /
    • 2018
  • Not all loads contribute to fatigue crack propagation in the welded detail of steel bridges when they are subjected to variable amplitude loading. For fatigue assessment, therefore, non-contributing stress cycles should be truncated. However, stress range truncation is not considered during typical fatigue reliability assessment. When applying the first order reliability method, stress range truncation occurs mismatch between the expected number of cycles to failure and the number of cycles obtained at the time of evaluation, because the expected number of cycles only counts the stress cycles that contribute to fatigue crack growth. Herein, we introduce a calibration factor to coordinate the expected number of cycles to failure to the equivalent value which includes both contributing and non-contributing stress cycles. The effectiveness of stress range truncation and the proposed calibration factor was validated via case studies.

이종재료 접착제 접합부의 환경 피로강도 평가 (Evaluation of Environmental Fatigue Strength in Adhesive Bonding of Different Materials)

  • 임재규;이중삼;윤호철;유성철
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.99-105
    • /
    • 2002
  • One of the important advantage of adhesive bonded joint can combine the different materials. The joint that bonded by structural adhesive bond must keep a large force and its strength is affected by some environmental factors such as temperature and submergence time in water. In order to advance the fatigue strength of adhesive bonded joint, mostly put a surface treatment on the surface. This study was researched the effect of air temperature, submergence time, submergence temperature and surface treatment on the fatigue strength. We found that submergence temperature has the most effect and low plasma treatment specimens have the most fatigue strength.

변동하중을 받는 강구조부재의 피로거동 해석 (The Fatigue Evaluation of Structural Steel Members under Variable-Amplitude Loading)

  • 장동일;곽종현;박용걸
    • 대한토목학회논문집
    • /
    • 제8권2호
    • /
    • pp.167-175
    • /
    • 1988
  • 본 연구의 목적은 변동하중을 받는 구조부재의 피로거동을 해석하는 것이다. 이 연구의 해석과정은 다음과 같다. (1) 도로교의 실동응력파측정 및 통계적해석 (2) 등가의 일정진폭하중과, 통계적해석에 의해 모형화된 변동하중하(下)의 피로시험 (3) 등가응력개념의 RMC 모델에 의한 변동하중하(下)의 피로해석 등가응력개념에 의한 변동하중하(下)의 피로해석은 대부분의 구조용강재의 균열성장속도회귀지수가 $m{\fallingdotseq}3$이므로 이론적으로 RMC 모델이 합당하다. 변동하중하(下)의 피로시험해석결과 RMC 모델이 기존의 RMC 모델보다 변동하중에 의한 피로거동치(da/dN-${\Delta}K$, $N_f$)에 더 가까웠다. 또 변동하중하(下)에서 응력범위의 변화로 인한 interaction효과나 응력범위적용순서(sequence)효과 등은 피로수명에 거의 영향을 미치지 않으며, 응력범위변화속도가 클수록 피로균열성장속도가 빨라짐을 알 수 있었다.

  • PDF

장기운용항공기 구조물의 잔여 피로수명예측 기법 (An Evaluation of Fatigue Life for Aging Aircraft Structure)

  • 이은경;정유인;김상식
    • 한국재료학회지
    • /
    • 제25권10호
    • /
    • pp.516-522
    • /
    • 2015
  • Aging aircraft structures are inevitably exposed to environment for a long time facing many potential problems, including corrosion and wide spread fatigue damage, which in turn cause the degradation of flight safety. In this study, the environmental surface damages on aging aircraft structures induced during service were quantitatively analyzed. Additionally, S-N fatigue tests were performed with center hole specimens extracted from aging aircraft structures. From the results of quantitative analyses of the surface damages and fatigue tests, it is concluded that corrosion pits initiated during service reduce the fatigue life significantly. Finally, using the fracture mechanics and the EIFS (equivalent initial flaw size) concepts, the remaining fatigue life was predicted based on actual fatigue test results.

Crack localization by laser-induced narrowband ultrasound and nonlinear ultrasonic modulation

  • Liu, Peipei;Jang, Jinho;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.301-310
    • /
    • 2020
  • The laser ultrasonic technique is gaining popularity for nondestructive evaluation (NDE) applications because it is a noncontact and couplant-free method and can inspect a target from a remote distance. For the conventional laser ultrasonic techniques, a pulsed laser is often used to generate broadband ultrasonic waves in a target structure. However, for crack detection using nonlinear ultrasonic modulation, it is necessary to generate narrowband ultrasonic waves. In this study, a pulsed laser is shaped into dual-line arrays using a spatial mask and used to simultaneously excite narrowband ultrasonic waves in the target structure at two distinct frequencies. Nonlinear ultrasonic modulation will occur between the two input frequencies when they encounter a fatigue crack existing in the target structure. Then, a nonlinear damage index (DI) is defined as a function of the magnitude of the modulation components and computed over the target structure by taking advantage of laser scanning. Finally, the fatigue crack is detected and localized by visualizing the nonlinear DI over the target structure. Numerical simulations and experimental tests are performed to examine the possibility of generating narrowband ultrasonic waves using the spatial mask. The performance of the proposed fatigue crack localization technique is validated by conducting an experiment with aluminum plates containing real fatigue cracks.

강철도교의 활하중-사하중 비에 따른 확률기반 피로수명 평가 (Probabilistic Fatigue Life Evaluation of Steel Railway Bridges according to Live-Dead Loads Ratio)

  • 이상목;이영주
    • 한국산학기술학회논문지
    • /
    • 제20권1호
    • /
    • pp.339-346
    • /
    • 2019
  • 강철도교에 대한 확률기반 피로 수명 평가를 위한 많은 연구들이 그간 있어 왔지만, 대부분 상대적으로 단순한 피로 균열 진전 모델을 기반으로 한 연구들이었다. 이 모델은 최소 응력이 0이고 일정한 응력변동 진폭을 가정하기 때문에, 철도교의 피로수명 평가에는 적합하지 않다. 따라서 본 연구에서는 보다 고도화된 균열 진전 모델을 이용해 강철도교의 피로 수명을 평가하는 새로운 확률기반 기법을 제안하였다. 또한 이 기법은 철도교에서 흔히 발생하는 다양한 하중 변동 진폭을 rainflow cycle counting algorithm을 사용해 고려할 수 있어, 보다 현실적인 피로 수명을 평가할 수 있다. 제안된 기법을 강철도교 예제 모델에 적용하여 피로 수명을 주요 부재 및 시스템에 대해 평가하였다. 또한 다양한 활하중-사하중 비가 피로 수명에 끼치는 영향을 분석하였으며, 그 결과 활하중-사하중 응력 비가 0에서 5/6까지 증가함에 따라 부재와 시스템 수준 모두에서 피로 수명이 30년 내외까지 줄어드는 것을 확인하였다.