• Title/Summary/Keyword: environmental VOCs

Search Result 654, Processing Time 0.028 seconds

Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area (수도권 지역에서 기상-대기질 모델링을 위한 VOC와 PM2.5의 화학종 분류 및 시간분배계수 산정)

  • Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.36-50
    • /
    • 2015
  • The purpose of this study is to assign emission source profiles of volatile organic compounds (VOCs) and particulate matters (PMs) for chemical speciation, and to correct the temporal allocation factor and the chemical speciation of source profiles according to the source classification code within the sparse matrix operator kernel emission system (SMOKE) in the Seoul metropolitan area. The chemical speciation from the source profiles of VOCs such as gasoline, diesel vapor, coating, dry cleaning and LPG include 12 and 34 species for the carbon bond IV (CBIV) chemical mechanism and the statewide air pollution research center 99 (SAPRC99) chemical mechanism, respectively. Also, the chemical speciation of PM2.5 such as soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal fired, power plant, biomass burning and marine was allocated to 5 species of fine PM, organic carbon, elementary carbon, $NO_3{^-}$, and $SO_4{^2-}$. In addition, temporal profiles for point and line sources were obtained by using the stack telemetry system (TMS) and hourly traffic flows in the Seoul metropolitan area for 2007. In particular, the temporal allocation factor for the ozone modeling at point sources was estimated based on $NO_X$ emission inventories of the stack TMS data.

Exposure Assessment of Hazardous gases in Confined Spaces (밀폐공간 종류별 유해가스 발생 농도 평가)

  • Park, Hyunhee;Yoo, Kye-mook;Ham, Seung-hon;Chung, Kwang-Jae;Shin, Min-a;Lee, Koo-yong;Jang, Kyung-jo;Yoon, Chung-sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.381-389
    • /
    • 2009
  • Confined spaces are inherently dangerous workplace and many fatal and nonfatal accidents have been reported. Even though these accidents occur in various kinds of confined spaces, there has rarely been reported on the health hazard agent, i.e., the types of gases and their concentration ranges. Therefore in this study, we evaluated several toxic and asphyxiating gas concentrations in various confined spaces. We surveyed 57 manholes, 3 sewage treatment plants, 2 yellow radish manufacturing companies and 7 barges to measure the concentrations of oxygen($O_2$), hydrogen sulfide($H_2S$), carbon monoxide(CO), ammonia($NH_3$). Lower Explosion Limits(LEL) and Volatile Organic Compounds (VOCs). Those four types of confined spaces occupies 56% of accidents during last 9 years in Korea. In 57 manholes, the concentration varied according to the types of manholes; rainfall and sewage, and by location; residential and industrial areas. Sewage manhole in industrial area was evaluated as the most hazardous than other types of manhole like rainfall manholes, residential sewage manholes. The highest $H_2S$ concentration and the lowest $O_2$ concentration at sewage manhole in industrial area were 300 ppm, 8.7% respectively. In 3 sewage treatment plants, $H_2S$ and $NH_3$ concentrations were reached up to the 500 ppm and 200 ppm respectively. Two yellow radish manufacturing companies showed the concentrations of 316 ppm, 505.2 ppm, 90 ppm and 15.7% for $H_2S$, CO, VOCs and $O_2$, respectively. Seven barges showed 15.9%~20.9% oxygen concentration. Gas species and concentration ranges varied by the types and location of confined spaces; CO, $H_2S$, $O_2$ could be hazardous in manhole, especially manhole connected to sewage plants. CO, $H_2S$, LEL, $O_2$, $NH_3$ should be controlled in sludge silo and sluge pumping confined spaces in sewage treatment plant. The activity of lifting out radish from the storage tank was evaluated more hazardous rather than the other activities in yellow radish manufacturing industry. The employers must conduct the survey to identify all possible confined spaces in their local workplace prior to performing the tasks. At the national level to reduce the accidents in the confined spaces, we suggest that systemic approach and active education program including possible hazards, standard operation procedures, ventilation plan, and personal protective equipment in confined spaces should be implemented.

Characterization of T-DNA Insertional Mutant of Formaldehyde-Responsive Protein1 (T-DNA 삽입에 의한 Formaldehyde-Responsive Protein1 기능파괴 돌연변이체의 특성연구)

  • Seo, Jae-Hyun;Woo, Su-Young;Kim, Wook;Kwon, Mi
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.501-507
    • /
    • 2010
  • Formaldehyde responsive protein(FRP) 1 belongs to the family of universal stress protein(USP) and is known to respond to stress caused by fumigation of gaseous volatile organic compounds(VOCs) such as formaldehyde and toluene. However, the molecular function of this protein is not well understood at cellular and molecular level. In this study, loss of function mutant of FRP1 generated by T-DNA insertion(frp1-4) has been isolated from Arabidopsis thaliana and the function of FRP1 was characterized. The loss-of-function mutant of FRP1 appeared slight growth defects with shorter stem and rosette leaves compared to wild type. In addition, the damage caused by exogenous VOCs was more severe in frp1-4 than in control. Therefore, Arabidopsis FRP1 seems to be the protein involved not only in the growth and development of plant but also the stress resistance against toxic volatile organic compounds.

Stabilization of Soil Moisture and Improvement of Indoor Air Quality by a Plant-Biofilter Integration System (식물-바이오필터에 의한 토양수분 안정화 및 실내 공기질 향상)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.751-762
    • /
    • 2015
  • This study was performed to investigate the stability of soil moisture in controlling air ventilation rate within a horizontal biofilter, and to compare removal efficiency (RE) of indoor air pollutants including fine dust, volatile organic compounds (VOCs), and formaldehyde (HCHO), depending on whether dieffenbachias (Diffenbachia amoena) were planted in the biofilter. The relative humidity, air temperature, and soil moisture contents showed stable values, regardless of the presence of D. amoena, and the plants grew normally in the biofilter. REs for number of fine dust particles (PM10 and PM2.5) within the biofilter filled with only soil were at least 30% and 2%, respectively. REs for number of fine dust particles (PM10 and PM2.5) within the biofilter including the plants were above 40% and 4%, respectively. RE for fine dust (PM10) weight was above 4% and 20%, respectively, in the biofilter containing only soil or soil together with plants. In the case of the biofilter filled with only soil, REs for xylene, ethylbenzene, toluene or total VOC (T-VOC) were each more than 63%; however, REs for benzene and formaldehyde (HCHO) were above 22% and 38%, respectively. In the biofilter with the plants, REs for xylene, ethylbenzene, toluene, and T-VOC were each above 72%, and REs for benzene and HCHO were above 39%. Thus, RE of the biofilter integrated with plants was found to be higher for volatile organic compounds than for fine dust. Hence, the biofilter was very effective for indoor air quality improvement and the effect was higher when integrated with plants.

Impact of Indoor Plants on Indoor Air Quality and Occupational Health in Newly Built Public Building Offices - Focusing on Allergic Conjunctivitis and Stress-related Symptom Questionnaires - (신축건물 사무실내 식물 적용의 실내 공기질 및 재실자 건강영향 평가 - 알레르기 비결막염 및 스트레스 관련 증상설문을 중심으로 -)

  • Lee, Yong Won;Lim, Young Wook;Kim, Kwang-Jin;Kim, Ho-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.334-348
    • /
    • 2017
  • Objectives: We investigated the impacts of indoor plants on indoor air quality and occupational health, focusing on allergic rhinconjunctivitis and stress among employees in new office buildings. Methods: A total of 34 employees working at new public office buildings were enrolled as subjects (n=17, with indoor plants) and as a control (n=17) group. Before and after introducing indoor plants for three months, indoor air quality measurements including VOCs and aldehydes and questionnaires on sick building syndrome, AR symptoms (ARIA based), stress (DASS 42, KOSS, and SACL), and indoor characteristics were performed and statistically analysed. Results: Among the 34 enrolled subjects, 19 were included in the probable AR subject group (subjects with indoor plants, n=8, control n=11) and completed all questionnaires. Statistical analyses were done for total, AR subject groups, and controls. As a result, it was confirmed that major indoor air pollutants decreased after the introduction of indoor plants (p<0.5). Among major symptoms of allergic rhinoconjunctivitis, watery rhinorrhea, nasal stuffiness, and nasal itching indexes decreased (p<0.5, respectively). A decrease was noted in some areas of work-related stress indexes (mainly KOSS) among the subject group (total and AR) and a decrease of indoor environmental attractiveness among the control group (total and AR) (p<0.5, for all). Conclusions: Indoor plants may help reduce indoor air pollutants and decrease AR symptoms and work-related stress of employees in newly built office buildings. Various further follow-up studies on the mechanism of environmental, physical, and emotional influences and utilization of indoor plants in association with allergic diseases will be needed.

A preliminary study of sorptive characteristics of aromatic volatile organic compounds (VOC) on clothing materials (방향족 유기화합물의 가스상 시료를 이용한 피복류의 흡착특성 비교에 대한 예비연구)

  • Kim, K.H.;Im, M.S.;Park, S.Y.;Hong, Y.J.;Choi, Y.J.;Lee, Y.S.;Kim, S.D.;Nam, S.H.;Ok, J.S.
    • Analytical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.255-262
    • /
    • 2006
  • In this study, we attempted to evaluate the sorptive loss of VOC upon their contact with different material surfaces including clothing pieces. For the purpose of this study, we developed a method to evaluate such loss by employing a filter holder pack in the thermal desorption line of the GC/FID system. The calibration curves of different aromatic VOCs including benzene, toluene, and xylene were made by loading them at different quantities through the analytical line. A series of experiments were conducted repetitively to draw calibration data sets for all three materials covering glass fiber, cotton, and nylon. The results were then compared in terms of both material types and of VOC types. The extent of sorptive loss increased in a highly systematic manner across different materials such as glass fiber, cotton, and nylon. The patterns of sorptive loss also increased gradually across VOC type such toward in the direction of increasing molecular weights: benzene, toluene, and xylene. According to this experimental study, it is concluded that sorptive behavior of pollutint compounds like VOC can be controlled by the combined effects of both chemical properties and material characteristics.

Manufacture of the Hydrophobic HY-type Zeolite-honeycomb and Its Adsorption/Desorption Characteristics for the Benzene, o-xylene, and MEK (소수성 HY-형 제올라이트제 하니컴의 제조 및 그 하니컴의 벤젠, o-xylene, MEK에 대한 흡.탈착특성)

  • Mo, Se-Young;Jeon, Dong-Hwan;Kwon, Ki-Seung;Sohn, Jong-Ryeul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.84-96
    • /
    • 2007
  • We performed the experiments to manufacture the hydrophobic $200cells/in^2$-zeolite honeycomb using HY-type zeolite of Si/Al ratio of 80 for separating and removing the VOCs emitted from small and medium size-plants by adsorption and to determine the drying method for the honeycomb at $105^{\circ}C$ without cracking, then measured performances of the honeycomb to adsorb the benzene, o-xylene, and MEK and to desorb the benzene and MEK saturated on the honeycomb by the nitrogen gas as the desorption gas. As a results, the good honeycomb was formed and the honeycomb was not cracked when the mixing ratio of the zeolite to bentonite to methyl cellulose to polyvinyl alcohol to glycerine to water is 100 : 8.73 : 2.18 : 4.19 : 1.38 : 126 and dried the honeycomb at $105^{\circ}C$ for 24 hours in the drying oven. The shape of the dried honeycomb was not changed after calcination, and the compressive strengths of the honeycomb after drying and calcination were 6.7 and $0.69kg/cm^2$, respectively. The adsorption efficiencies of the honeycomb for benzene, o-xylene, and MEK were $92{\sim}96%$ at the room temperature. The desorption efficiency at $180^{\circ}C$ was higher than that at $150^{\circ}C\;by\;1.5{\sim}13.8%$ depending on the flow rate of the nitrogen gas, and it was found that desorption efficiency is higher than 85% at $180^{\circ}C$ and 1.0L/min of the nitrogen gas. At $180^{\circ}C$ and 0.2 L/min, the concentration of the benzene and MEK in the used desorption gas are higher than 40,000 and 50,000ppm, respectively, so it be used as the fuel for preheating the desorption gas fed into the column in desorption cycle.

Comparison of air pollution and the prevalence of allergy-related diseases in Incheon and Jeju City

  • Jeong, Su-Ho;Kim, Jeong-Hee;Son, Byong-Kwan;Hong, Seong-Chul;Kim, Su-Young;Lee, Geun-Hwa;Lim, Dae-Hyun
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.12
    • /
    • pp.501-506
    • /
    • 2011
  • Purpose: A high level of air pollutants can increase the number of patients with allergy-related diseases such as asthma and allergic rhinitis (AR). To analyze the association between air pollution and allergic disease, we investigated 2 areas in Korea: Incheon, an industrial area, and Jeju, a non-industrialized area. Methods: Second grade students at elementary schools (11 schools in Incheon and 45 schools in Jeju) were examined in a cross-sectional study. A questionnaire was used and a skin prick test was performed. The levels of $NO_2$, $CO_2$, $O_3$, particulate matter (PM) $PM_{10/2.5}$, formaldehyde, tVOCs, and dust mites in the classrooms and grounds were determined. Results: The levels of outdoor CO, $PM_{10}$, and $PM_{2.5}$ were significantly higher in Incheon (P<0.01). The levels of indoor CO, $CO_2$, $PM_{10}$, $PM_{2.5}$ were significantly higher in Incheon (P<0.01). The prevalence rates of AR symptoms at any time, AR symptoms during the last 12 months, diagnosis of rhinitis at any time, and AR treatment during the last 12 months were significantly higher in Incheon (P<0.01). The prevalence rate of wheezing or whistling at any time, and wheezing during the last 12 months were significantly higher in Incheon (P<0.01). Conclusion: We found that the children living in Incheon, which was more polluted than Jeju, had a higher rate of AR and asthma symptoms compared to children in Jeju. To determine the effect of air pollution on the development of the AR and asthma, further studies are needed.

Characterization of Aerosol Composition, Concentration, and Sources in Bukhansan National Park, Korea (북한산국립공원 내 초미세먼지 농도 및 화학적 특성)

  • Kang, Seokwon;Kang, Taewon;Park, Taehyun;Park, Gyutae;Lee, Junhong;Hong, Je-Woo;Hong, Jinkyu;Lee, Jaehong;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.457-468
    • /
    • 2018
  • To improve understanding of the physico-chemical characteristics of aerosols in the national park and comparing the air pollution between national park and the urban area nearby national park, the aerosol characterization study was conducted in Bukhansan National Park, Seoul, from July through September 2017. Semi-continuous measurements of $PM_{2.5}$ using PILS (Particle Into Liquid System) coupled with IC (Ion Chromatography) and TOC (Total Organic Carbon) analyzer allowed quantification of concentrations of major ionic species($Cl^-$, $SO_4{^{2-}}$, $NO_3{^-}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg{^{2+}}$ and $Ca{^{2+}}$) and water soluble organic carbon (WSOC) with 30-minute time resolution. The total mass concentration of $PM_{2.5}$ was measured by T640 (Teledyne) with 5-minute time resolution. The black carbon (BC) and ozone were measured with a minute time resolution. The timeline of aerosol chemical compositions reveals a strong influence from urban area (Seoul) at the site in Bukhansan National Park. Inorganic aerosol composition was observed to be dominated by ammoniated sulfate at most times with ranging from $0.1{\sim}32.6{\mu}g/m^3$ (6.5~76.1% of total mass of $PM_{2.5}$). The concentration of ammonium nitrate, a potential indicator of the presence of local source, ranged from below detection limits to $20{\mu}g/m^3$ and was observed to be highest during times of maximum local urban (Seoul) impact. The total mass of $PM_{2.5}$ in Bukhansan National Park was observed to be 10~23% lower than the total mass of $PM_{2.5}$ in urban area (Gireum-dong and Bulgwang-dong, Seoul). In general, ozone concentration in Bukhansan National Park was observed to be similar or higher than urban sites in Seoul, suggesting additional biogenic VOCs with $NO_x$ from vehicle emission were to be precursors for ozone formation in Bukhansan National Park.

Patterns of Offensive Odor Compounds According to Blocks in Shiwha Industrial Complex (시화산업단지의 블록 별 악취유발물질 특성)

  • Byeon, Sang-Hoon;Lee, Jung-Geun;Kim, Jung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1161-1168
    • /
    • 2009
  • This research was conducted on characteristic of offensive odors in Shihwa industrial complex. Result of blocks distribution of TVOC indicates that mechanic block, site D, was the highest concentration (74 ppb). Chemistry block, site A, was the second highest concentration (50 ppb). Also, mixed blocks, metal blocks and park etc. were measured almost similar concentration about 30 ppb, but mixed block, site F, was the place where concentrations were the smallest. Average of TVOC was shown about 35 ppb concentration. Aldehydes including acetaldehyde, butyraldehyde and hydrogen sulfide concentrations were prevalent among offensive odors in Shihwa industrial complex. Comparing the offensive odor intensity mostly about acetaldehyde, butyraldehyde and hydrogen sulfide which contain high offensive odor intensity showed results that sites A, B (chemistry block) and site D, I (mechanic block) site H (metal block) have showed the intensity over 1. In the case of acetaldehyde, relatively the high odor intensities over '2' were able to obtain in many cases. The correlation coefficient (r) for hydrogen sulfide was 0.91, so that high positive correlation exists between offensive odor intensity and the hydrogen sulfide element. Butyraldehyde also showed high positive correlation coefficient, as 0.82. Correlation coefficient of acetaldehyde that had the highest value as offensive odor substance was 0.62, had somewhat correlation with offensive odor intensity.