• Title/Summary/Keyword: environment sensor

Search Result 3,367, Processing Time 0.027 seconds

Building structural health monitoring using dense and sparse topology wireless sensor network

  • Haque, Mohammad E.;Zain, Mohammad F.M.;Hannan, Mohammad A.;Rahman, Mohammad H.
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.607-621
    • /
    • 2015
  • Wireless sensor technology has been opened up numerous opportunities to advanced health and maintenance monitoring of civil infrastructure. Compare to the traditional tactics, it offers a better way of providing relevant information regarding the condition of building structure health at a lower price. Numerous domestic buildings, especially longer-span buildings have a low frequency response and challenging to measure using deployed numbers of sensors. The way the sensor nodes are connected plays an important role in providing the signals with required strengths. Out of many topologies, the dense and sparse topologies wireless sensor network were extensively used in sensor network applications for collecting health information. However, it is still unclear which topology is better for obtaining health information in terms of greatest components, node's size and degree. Theoretical and computational issues arising in the selection of the optimum topology sensor network for estimating coverage area with sensor placement in building structural monitoring are addressed. This work is an attempt to fill this gap in high-rise building structural health monitoring application. The result shows that, the sparse topology sensor network provides better performance compared with the dense topology network and would be a good choice for monitoring high-rise building structural health damage.

An Implementation of High-performance Router Platform Supporting IPv6 that can High-speed Wired/wireless Interface and QoS (IPv6를 지원하는 초고속 유/무선 인터페이스와 QoS제공 가능한 고성능 라우터 플랫폼 개발)

  • Ryoo, Kwang-Seok;Seo, In-Ho;Shin, Jae-Heung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.229-235
    • /
    • 2017
  • Until now, a study on a ubiquitous sensor network has been mainly concentrated in the areas of sensor nodes, and as a results, technologies related with sensor node were greatly developed. Despite of many achievements on research and development for a sensor node, a ubiquitous sensor network may failed to establish the actual service environment because variety of restrictions. In order to provide a actual service using a ubiquitous sensor networks applied to many results on research and development for a sensor nodes, a study on a wired/wireless composite router must be carried out. However a study on a wired/wireless composite router is relatively very slow compared with the sensor node. In this study, developed a high-performance router platform supporting IPv6 that can provide high-speed wired/wireless interface and QoS, and it can provide the multimedia service Interlocking the wireless sensor network and the Internet network. To analysis a given network environment and to develop the appropriate hardware and software in accordance with this requirement.

The Design of mBodyCloud System for Sensor Information Monitoring in the Mobile Cloud Environment

  • Park, Sungbin;Moon, Seok-Jae;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, introduced a cloud computing technology to the IT industry, smart phones, it has become possible connection between mobility terminal such as a tablet PC. For dissemination and popularization of movable wireless terminal, the same operation have focused on a viable mobile cloud in various terminal. Also, it evolved Wireless Sensor Network(WSN) technology, utilizing a Body Sensor Network(BSN), which research is underway to build large Ubiquitous Sensor Network(USN). BSN is based on large-scale sensor networks, it integrates the state information of the patient's body, it has been the need to build a managed system. Also, by transferring the acquired sensor information to HIS(Hospital Information System), there is a need to frequently monitor the condition of the patient. Therefore, In this paper, possible sensor information exchange between terminals in a mobile cloud environment, by integrating the data obtained by the body sensor HIS and interoperable data DBaaS (DataBase as a Service) it will provide a base of mBodyCloud System. Therefore, to provide an integrated protocol to include the sensor data to a standard HL7(Health Level7) medical information data.

An Efficient Particle Sensor Algorithm (에너지 효율을 고려한 파티클 센서 알고리즘)

  • Hong, Sung-Hwa;Kim, Hoon-Ki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.141-148
    • /
    • 2009
  • Wireless Sensor Networks (WSN) can be applied to various industry fields and environment analysis fields with the progress of various sensor technologies. Also WSN help automatically monitoring of sensor nodes installed at wide area. Especially, the tiny sensor nodes recently developed for the environment analysis require much more electronic power. The reasons are the measurable fields are departmentalized and the more detailed measuring fields are created by the development of various materials and applications. Furthermore, the sensor nodes operated by small batteries for the fields require low cost and low power consumption in wireless networks technology. The power efficiency is the most important factor for the WSN life time. Because the sensor nodes are installed at wide area and hard to recover. This paper proposes the WSN algorithm is applied sensor node that has low power consumption and efficiency measurement.

Development of 3-D viewer for indoor location tracking system using wireless sensor network

  • Yang, Chi-Shian;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.110-114
    • /
    • 2007
  • In this paper we present 3-D Navigation View, a three-dimensional visualization of indoor environment which serves as an intuitive and unified user interface for our developed indoor location tracking system via Virtual Reality Modeling Language (VRML) in web environment. The extracted user's spatial information from indoor location tracking system was further processed to facilitate the location indication in virtual 3-D indoor environment based on his location in physical world. External Authoring Interface (EAI) provided by VRML enables the integration of interactive 3-D graphics into web and direct communication with the encapsulated Java applet to update position and viewpoint of user periodically in 3-D indoor environment. As any web browser with VRML viewer plug-in is able to run the platform independent 3-D Navigation View, specialized and expensive hardware or software can be disregarded.

Wireless network design for construction of atmospheric and marine environment monitoring system using buoy

  • Lim, ChaeYoung;Lee, SangHyun
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.269-274
    • /
    • 2020
  • It has used buoy for efficient domestic farm operations and fishermen fish. Buoy uses IoT-based communication to transmit water temperature, salinity, humidity, wind speed, etc. to fishers in real time. In this paper, we utilize LoRa, which enables communication in the marine environment, to construct a network and apply it to an actual buoy for monitoring. The implemented LoRa uses the 900MHz band to configure the network. The sensor consisted of a sensor that can monitor the atmospheric environment and a sensor that can monitor the marine environment. In addition, the information received in real time will be provided to the fishing village host. The fishermen were fully aware of this and took appropriate measures to conduct sea trials.

세라믹 가스센서를 이용한 토양증기추출공정의 배출가스 모니터링 기법 연구

  • 양지원;조현정;이재영;곽무영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.250-252
    • /
    • 2002
  • The goals of environmental monitoring are to locate and quantify the significant contamination, estimate the fate and transport, estimate the potential exposure and risks to humans and the environment, and track the performance of various remedial technologies. In this study, ceramic gas sensor system is proposed to enhance the effectiveness of soil vapor extraction (SVE) process by monitoring the effluent gas. SVE is a technique that is widely used to remediate unsaturated soils contaminated with volatile organic contaminants. The sensor response for benzene, toluene, and xylene, the representative effluent gas compositions of SVE process, was evaluated using the proposed sensor system. As a result, it was verified that the response of sensor was increased or decreased very sensitively according to the change of the effluent gas concentration. Besides, the sensor could detect the difference over a wide range of concentration and it was more sensitive in order of xylene, toluene, and benzene. It is expected that this VOC analysis method results in field monitoring costs saying and appropriate immediate action for process control. More detailed experiments are being conducted in our research group.

  • PDF

The Development of Sensor System and 3D World Modeling for Autonomous Vehicle (무인 차량을 위한 센서 시스템 개발 및 3차원 월드 모델링)

  • Kim, Si-Jong;Kang, Jung-Won;Choe, Yun-Geun;Park, Sang-Un;Shim, In-Wook;Ahn, Seung-Uk;Chung, Myung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.531-538
    • /
    • 2011
  • This paper describes a novel sensor system for 3D world modeling of an autonomous vehicle in large-scale outdoor environments. When an autonomous vehicle performs path planning and path following, well-constructed 3D world model of target environment is very important for analyze the environment and track the determined path. To generate well-construct 3D world model, we develop a novel sensor system. The proposed novel sensor system consists of two 2D laser scanners, two single cameras, a DGPS (Differential Global Positioning System) and an IMU (Inertial Measurement System). We verify the effectiveness of the proposed sensor system through experiment in large-scale outdoor environment.

A Design and Implementation of EPCIS Repository for RFID and Sensor Data (RFID와 센서 데이터 처리를 위한 EPCIS 저장소 설계 및 구현)

  • Hyun, Seung-Ryul;Lee, Sang-Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.151-162
    • /
    • 2010
  • In order to build up the ubiquitous computer environment, there are many researches on automatic identification, sensor networks, and home networks etc. EPCIS (EPC Information Services), which is proposed by EPCglobal, is a standard on the repository managing tag data that is needed to develop RFID application system. In this paper, the EPCIS repository is designed and implemented. It is able to search the object dependent upon general object recognition and environment information variation. And sensor data, which is also massive data and is changed with position, is integrated into RFID data in the system. By doing so, it is possible to do the convergence managements of object recognition with variations of USN (Ubiquitous Sensor Network) environment.

The Underwater Environment Monitoring System based on Ocean Oriented WSN(Wireless Sensor Network) (해양 적응형 무선센서네트워크 기반의 수중 환경 모니터링 시스템)

  • Yun, Nam-Yeol;NamGung, Jung-Il;Park, Hyun-Moon;Park, Su-Hyeon;Kim, Chang-Hwa
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.122-132
    • /
    • 2010
  • The analysis of ocean environment offers us essential information for ocean exploration. But ocean environment has a lot of environmental variables such as the movements of nodes by an ocean current, corrosion by salt water, attenuation of radio wave, occurrences of multi-path and difficulty of sensor nodes' deployment. It is accordingly difficult and complex to gather and process the environmental information through ocean data communication due to these constraints of ocean environment unlike the terrestrial wireless networks. To overcome these problems, we organized ocean communication network for monitoring underwater environment by real experiment in Gyeongpoho similar to ocean environment. Therefore, this paper aims at overcoming major obstacles in ocean environment, effectively deploying sensor nodes for ocean environment monitoring and defining an efficient structure suitable for communication environment by the implementation of ocean environment monitoring system in Gyeongpoho.