• Title/Summary/Keyword: environment modeling

Search Result 3,455, Processing Time 0.034 seconds

Using Potential Field for Modeling of the Work-environment and Task-sharing on the Multi-agent Cooperative Work

  • Makino, Tsutomu;Naruse, Keitarou;Yokoi, Hiroshi;Kakazu, Yikinori
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.37-44
    • /
    • 2001
  • This paper describes the modeling of work environment for the extraction of abstract operation rules for cooperative work with multiple agent. We propose the modeling method using a potential field. In the method, it is applied to a box pushing problem, which is to move a box from a start to a goal b multiple agent. The agents follow the potential value when they move and work in the work environment. The work environment is represented as the grid space. The potential field is generated by Genetic Algorithm(GA) for each agent. GA explores the positions of a potential peak value in the grid space, and then the potential value stretching in the grid space is spread by a potential diffusion function in each grid. However it is difficult to explore suitable setting using hand coding of the position of peak potential value. Thus, we use an evlolutionary computation way because it is possible to explore the large search space. So we make experiments the environment modeling using the proposed method and verify the performance of the exploration by GA. And we classify some types from acquired the environment model and extract the abstract operation rule, As results, we find out some types of the environment models and operation rules by the observation, and the performance of GA exploration is almost same as the hand coding set because these are nearly same performance on the evaluation of the consumption of agent's energy and the work step from point to the goal point.

  • PDF

Stability of the Robot Compliant Motion control - Part 1 : Theory

  • Kim, Sung-Kwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.973-980
    • /
    • 1988
  • This two-part paper presents a control method that allows for stable interaction of a robot manipulator with the environment. In part 1, we focus on the input ouput relationships (unstructured modeling) of the robot and environment dynamics. This analysis leads to a general condition for stability of the robot and environment taken as a whole. This stability condition, for stable maneuver, prescribes a finite sensitivity for robot and environment where sensitivity of the robot(or the environment) is defined as a mapping forces into displacement. According to this stability condition, smaller sensitivity either in robot or in environment leads to narrower stability range. In the limit, when both systems have zero sensitivity, stability cannot be guaranteed. These models do not have any particular structure, yet they can model a wide variety of industrial and research robot manipulators and environment dynamic behavior. Although this approach of modeling may not lead to any design procedure, it will allow us to understand the fundamental issues in stability when a robot interacts with an environment.

  • PDF

Devlopment HLA DEVS-Obj-C Environment for Distributed Simulation (분산 시뮬레이션을 위한 HLA DEVS-Obj-C 환경 구축)

  • 최두진;조대호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.11a
    • /
    • pp.85-89
    • /
    • 2002
  • Development of distributed simulation environment must be required in order to simulate the distributed models regionally and inter-operate with running simulations individually, Simulation based on DEVS formalism is difficult to simulate the distributed models. DEVS formalism is modeling methodology. To specify model, this formalism separates behavior and structure, therefore it is able to design complex model easily. HLA is standard framework of distribute simulation environment, It is defined to facilitate the interoperability and the reusability. RTI (Run Time Infrastructure) is software that provides common service to simulation systems and implementation of the HLA Interface Specification. Method of implementation is that modules cooperating with RTI are added to simulator on DEVS simulation environment. On the DEVS simulation environment (DEVS-Obj -C) that already developed, Highest class of abstract simulator uses service that RTI provide, then This environment is able to change DEVS model into Federate and run distribute simulation that inter-operates with the RTI. Because this distributed simulation environment includes convenience of modeling that obtains through the DEVS formalism and accompanies HLA standard, this environment make it possible to simulate with_ complex systems and heterogeneous simulations

  • PDF

Stability of the Robot Compliant Motion Control, Part 1 : Theory (로보트의 Compliance 제어에서의 안정성:이론)

  • Sung-Kwun Kim
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.941-949
    • /
    • 1989
  • This two-part paper presents a control method that allows for stable interaction of a robot manipulator with environment. In part 1, we focus on the input output relationships (unstructured modeling) of the robot and environment dynamics. This analysis leads to a general condition for stability of the robot and environment taken as a whole. This stability condition, for stable maneuver, prescribes a finite sensitivity for robot and environment where sensitivity of the robot (or the environment) is defined as a mapping forces into displacement. According to this stability condition, smaller sensitivity either in robot or in environment leads to narrower stability range. In the limit, when both systems have zero sensitivity, stability cannot be guaranteed. These models do not have any particular structure, yet they can model a wide variety of industrial and research robot manipulators and environment dynamic behavior. Although this approach of modeling may not lead to and design procedure, it will allow us to understand the fundamental issues in stability when a robot interacts with an environment.

A Framework Development for BIM-based Object-Oriented Physical Modeling for Building Thermal Simulation (객체지향 물리적 모델링 기법을 활용한 BIM기반 통합 건물에너지 성능분석 모델 구축 및 활용을 위한 프레임워크 개발 - 건물 열부하 시뮬레이션 중심으로 -)

  • Jeong, WoonSeong
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.95-105
    • /
    • 2015
  • Purpose: This paper presents a framework development for BIM (Building Information Modeling)-based OOPM (Object-Oriented Physical Modeling) for Building Thermal Simulation. The framework facilitates decision-making in the design process by integrating two object-oriented modeling approaches (BIM and OOPM) and efficiently providing object-based thermal simulation results into the BIM environment. Method: The framework consists of a system interface between BIM and OOPM-based building energy modeling (BEM) and the visualization of simulation results for building designers. The interface enables a BIM models to be translated into OOPM-based BEM automatically and the thermal simulation from the created BEM model immediately. The visualization module enables the simulation results to be presented in BIM for building designers to comprehend the relationships between design decisions and the building performances. For the framework implementation, we utilized the Modelica Buildings Library developed by the Lawrence Berkeley National Laboratory as a thermal simulation solver. We also conducted an experiment to validate the framework simulation results and demonstrate our framework. Result: This paper demonstrates a new methodology to integrate BIM and OOPM-based BEM for building thermal simulation, which enables an automatic translation BIM into OOPM-based BEM with high efficiency and accuracy.

Environment Modeling for Autonomous Welding Robotus

  • Kim, Min-Y.;Cho, Hyung-Suk;Kim, Jae-Hoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.124-132
    • /
    • 2001
  • Autonomous of welding process in shipyard is ultimately necessary., since welding site is spatially enclosed by floors and girders, and therefore welding operators are exposed to hostile working conditions. To solve this problem, a welding robot that can navigate autonomously within the enclosure needs to be developed. To achieve the welding ra나, the robotic welding systems needs a sensor system for the recognition of the working environments and the weld seam tracking, and a specially designed environment recognition strategy. In this paper, a three-dimensional laser vision system is developed based on the optical triangulation technology in order to provide robots with work environmental map. At the same time a strategy for environment recognition for welding mobile robot is proposed in order to recognize the work environment efficiently. The design of the sensor system, the algorithm for sensing the structured environment, and the recognition strategy and tactics for sensing the work environment are described and dis-cussed in detail.

  • PDF

Numerical Study on the Impact of Meteorological Input Data on Air Quality Modeling on High Ozone Episode at Coastal Region (기상 입력 자료가 연안지역 고농도 오존 수치 모의에 미치는 영향)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Kim, Dong-Hyuk;Park, Soon-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.30-40
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of SST spatial distribution on the result of air quality modeling. Eulerian photochemical dispersion model CAMx (Comprehensive Air quality Model with eXtensions, version 4.50) was applied in this study and meteorological fields were prepared by RAMS (Regional Atmospheric Modeling System). Three different meteorological fields, due to different SST spatial distributions were used for air quality modeling to assess the sensitivity of CAMx modeling to the different meteorological input data. The horizontal distributions of surface ozone concentrations were analyzed and compared. In each case, the simulated ozone concentrations were different due to the discrepancies of horizontal SST distributions. The discrepancies of land-sea breeze velocity caused the difference of daytime and nighttime ozone concentrations. The result of statistic analysis also showed differences for each case. Case NG, which used meteorological fields with high resolution SST data was most successfully estimated correlation coefficient, root mean squared error and index of agreement value for ground level ozone concentration. The prediction accuracy was also improved clearly for case NG. In conclusion, the results suggest that SST spatial distribution plays an important role in the results of air quality modeling on high ozone episode at coastal region.

Modeling of Emissions from Open Biomass Burning in Asia Using the BlueSky Framework

  • Choi, Ki-Chul;Woo, Jung-Hun;Kim, Hyeon Kook;Choi, Jieun;Eum, Jeong-Hee;Baek, Bok H.
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.25-37
    • /
    • 2013
  • Open biomass burning (excluding biofuels) is an important contributor to air pollution in the Asian region. Estimation of emissions from fires, however, has been problematic, primarily because of uncertainty in the size and location of sources and in their temporal and spatial variability. Hence, more comprehensive tools to estimate wildfire emissions and that can characterize their temporal and spatial variability are needed. Furthermore, an emission processing system that can generate speciated, gridded, and temporally allocated emissions is needed to support air-quality modeling studies over Asia. For these reasons, a biomass-burning emissions modeling system based on satellite imagery was developed to better account for the spatial and temporal distributions of emissions. The BlueSky Framework, which was developed by the USDA Forest Service and US EPA, was used to develop the Asian biomass-burning emissions modeling system. The sub-models used for this study were the Fuel Characteristic Classification System (FCCS), CONSUME, and the Emissions Production Model (EPM). Our domain covers not only Asia but also Siberia and part of central Asia to assess the large boreal fires in the region. The MODIS fire products and vegetation map were used in this study. Using the developed modeling system, biomass-burning emissions were estimated during April and July 2008, and the results were compared with previous studies. Our results show good to fair agreement with those of GFEDv3 for most regions, ranging from 9.7 % in East Asia to 52% in Siberia. The SMOKE modeling system was combined with this system to generate three-dimensional model-ready emissions employing the fire-plume rise algorithm. This study suggests a practicable and maintainable methodology for supporting Asian air-quality modeling studies and to help understand the impact of air-pollutant emissions on Asian air quality.

Direct Depth and Color-based Environment Modeling and Mobile Robot Navigation (스테레오 비전 센서의 깊이 및 색상 정보를 이용한 환경 모델링 기반의 이동로봇 주행기술)

  • Park, Soon-Yong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.194-202
    • /
    • 2008
  • This paper describes a new method for indoor environment mapping and localization with stereo camera. For environmental modeling, we directly use the depth and color information in image pixels as visual features. Furthermore, only the depth and color information at horizontal centerline in image is used, where optical axis passes through. The usefulness of this method is that we can easily build a measure between modeling and sensing data only on the horizontal centerline. That is because vertical working volume between model and sensing data can be changed according to robot motion. Therefore, we can build a map about indoor environment as compact and efficient representation. Also, based on such nodes and sensing data, we suggest a method for estimating mobile robot positioning with random sampling stochastic algorithm. With basic real experiments, we show that the proposed method can be an effective visual navigation algorithm.

  • PDF

A Study on an Integrated Monitoring and Modeling System for Marine Environment of Coastal Waters (연안해역 환경의 종합 감시 및 모델 체계에 관한 연구)

  • 김광수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.149-159
    • /
    • 2002
  • Various numerical models that have been developed for marine environments and applied to coastal waters in USA were introduced briefly. Inter alia, with regard to an integrated monitoring and modeling system, the main features and outline of system, the system architecture for data management and representation system, and the incorporation of internet based technology were described. An example of application of an integrated system to coastal waters was also presented. The prospective research works to improve the capabilities and to advance the functionality of an integrated monitoring, modeling and management system were suggested to be the instrumentations for various monitoring parameters, the new development and/or advancement of various numerical models, the relevant internet based technologies. etc..

  • PDF