• Title/Summary/Keyword: envelope flame

Search Result 5, Processing Time 0.02 seconds

Numerical Simulation of Transient Laminar Reacting Flows Around Fuel Droplets (연료액적 주변의 비정상 층류 화염장 해석)

  • You S. W.;Kang S. M.;Kim T. J.;Kim Y. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.78-85
    • /
    • 2000
  • The transient laminar reacting flows around fuel droplet have been numerically analyzed. The physical models used in this study can account for the variable thermophysical properties and the chemistry is represent by the one-step global reaction model. The present study is focused on the vaporization and ignition characteristics, flame structure including wake flame, transition flame and envelope flame, and interaction between droplets. special emphasis is given to the triple flame structure and flame stabilization.

  • PDF

Numerical Simulation of Transient Laminar Reacting Flows Around Fuel Droplets (연료액적 주변의 비정상 층류 화염장 해석)

  • You S. W.;Kang S. M.;Kim Y. M.
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.47-55
    • /
    • 2001
  • The transient laminar reacting flows around fuel droplet have been numerically analyzed. The physical models used in this study can account for the variable thermophysical properties and the chemistry is represent by the one-step global reaction model. The present study is focused on the vaporization and ignition characteristics, flame structure including wake flame, transition flame and envelope flame, and interaction between droplets. Special emphasis is given to the triple flame structure and flame stabilization.

  • PDF

Numerical Study on the Interaction of Liquid Fuel Droplets in the Reacting Flow Field (연소 유동장 내 액체 연료 액적간의 상호작용에 대한 수치적 연구)

  • Cho, Chong-Pyo;Kim, Ho-Young;Park, Sim-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.63-71
    • /
    • 2001
  • The objective of this work is to elucidate the details of two key factors dominating the droplet buring behavior in sprays : droplet-droplet interaction and convective flow. The combustion of a one-dimensional linear droplet array with a convective flow has been studied. A one-step, second order model was employed to simulate the chemical reaction in the combustion process. Results for droplet arrays burning at two Reynolds numbers, 50 and 100, two horizontal droplet spacings, 5 and 11 radii, and two vertical droplet spacing, 2 and 4 radii, were obtained. The results indicate the droplet burning behavior is affected by Reynolds number, droplet-droplet spacing, and the relative location of droplets in the array. Droplet-droplet interaction was found to be strong for arrays with smaller droplet spacing.

  • PDF

Study on Disaster Prevention System for Long Span Bridge over the Sea (장대해상교량의 방재시스템 구축에 관한 연구)

  • Kong, Byung-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.59-64
    • /
    • 2009
  • Bridge types such as the suspension bridges and the cable stayed bridges maintained by cables present the dangerous possibility of a ship running through the bottom of the bridge. Due to hangers and main cables in the upper structural system, the bridge is also susceptible to disasters. However, these cable bridges are usually used for long span bridges over the sea. This structure is relatively more exposed to disasters, such as wind, hail, and earthquake, than other structures. This structure also has the potential to cause car accidents on account of the poor visibility due to foggy conditions. If a fire breaks out because of a car accident due to wind, a car explosion will likely occur.

Non-Steady Group Combustion of Liquid Fuel Droplets (액체연료 액적군 의 비정상 집단연소)

  • 김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.6
    • /
    • pp.544-552
    • /
    • 1984
  • A non-steady group combustion model of a spherical droplets cloud has been developed to access the non-steady effects of collective behavior of fuel droplets on combustion characteristics and cloud structure. A system of conservation equations of droplets cloud in axisymmetric spherical coordinate was solved by numerical methods for n-Butylbenzene(C$_{10}$ / $H_{14}$) It was found that the effect of initial droplet size on combustion characteristics is dominated compare with effects of cloud size and number density of droplets. For dense droplets cloud, external group combustion mode is established during main part of cloud life time, and internal and single droplet combustion modes are simultaneously established for the dilute droplets cloud. Radius of cloud and external envelope flame are slowly decreased during main part of cloud life time, and suddenly decreased at end of combustion period.d.