• 제목/요약/키워드: entropy method

검색결과 872건 처리시간 0.018초

충적층의 정밀 선구조 추출을 위한 위성영상과 GIS 기법의 활용에 관한 연구 (A Study on the Precise Lineament Recovery of Alluvial Deposits Using Satellite Imagery and GIS)

  • 이수진;석동우;황종선;이동천;김정우
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 공동 춘계학술대회 논문집
    • /
    • pp.363-368
    • /
    • 2003
  • Landsat TM 영상을 이용, 명암차가 높은 산악 지역에 적용해왔던 알고리즘을 개선하여 비교적 명암차가 낮고 충적층이 넓게 분포하는 지역의 선구조를 추출하는 알고리즘을 개발하였다. 수치지형모델에 대하여 Local Enhancement를 이용, 평탄한 지역으로부터 충적층을 추출하였다. Zevenbergen & Thorno's Method를 3×3moving windowing을 통해서 최대 경사방향과 경사를 이용하여 충적층을 지나는 선구조 요소를 추출하고 다시 Hough 변환을 이용해서 1차 선구조를 추출하였다. 이로부터 충적층의 직각방향의 지형단면의 경사를 유추해서 spline 보간법을 이용해 단면의 최저점을 구하고 이 구해진 점들을 다시 Hough 변환을 이용해서 최종 선구조를 추출하였다. 본 연구에서 사용한 알고리즘은 기존 알고리즘에서 사용된 소창문보다 훨씬 큰 충적층이 분포하는 지역의 지형 경사가 수렴하는 부분에 선구조가 뚜렷이 나타남을 볼 수 있다. 최대경사방향과 경사를 구해서 얻어진 1차 선구조와 최종선구조에서 선구조 방향이 다소 차이를 보인다. 1차 선구조의 수직방향 지형단면의 자료를 이용함에 있어, 지형 단면의 시작점과 끝지점을 임의적으로 결정하는 것이 아니라, 충적층을 가로질러 최고점까지 또는 다음 충적층이 나을 때까지의 자료를 이용해서 보간법을 사용하였고, 충적층의 넓이에 따라 보간할 자료량의 차이에 의한 오차가 발생할 수 있다. 넓은 충적층에서 선구조가 잘 추출되는 반면에 좁은 충적층이 분포하거나 계곡에 해당하는 지역에서는 경사수렴부와 일치하지 않는 선구조가 추출되었다. 이는 향후 계속적으로 연구해서 보완되어야 할 것으로 사료된다. 차원에서 기준치 설정 및 주기적인 측정을 통해 지속적으로 관리를 해야 한다. 그리고 정기적인 특수건강진단의 실시와 같은 근본적인 해결방안을 찾아야겠다.l rectangular type to a wed농e type. The Proposed wedge shape makes the absorption length longer for obliquely incident photons, thus increasing the detection efficiency and suppressing leakage coefficient. For the BGO detectors of 4-8mm width, the computer simulation result of the system using wedge detectors reveals resolution improvement to the system using conventional detectors. For the system composed of 200 BGO detectors of 8mm width with 2 point sampling motion, the simulation resolution system using conventional detectors. For the very high resolution system of 3-7mm FWHM, the characteristics of the detector shape and size is studied by computer simulation.n, but also such efficient a parameter as to perform almost like entropy.소한 1대

  • PDF

스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식 (A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data)

  • 김길호;최상우;채문정;박희웅;이재홍;박종헌
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.163-177
    • /
    • 2019
  • 스마트폰이 널리 보급되고 현대인들의 생활 속에 깊이 자리 잡으면서, 스마트폰에서 수집된 다종 데이터를 바탕으로 사용자 개인의 행동을 인식하고자 하는 연구가 활발히 진행되고 있다. 그러나 타인과의 상호작용 행동 인식에 대한 연구는 아직까지 상대적으로 미진하였다. 기존 상호작용 행동 인식 연구에서는 오디오, 블루투스, 와이파이 등의 데이터를 사용하였으나, 이들은 사용자 사생활 침해 가능성이 높으며 단시간 내에 충분한 양의 데이터를 수집하기 어렵다는 한계가 있다. 반면 가속도, 자기장, 자이로스코프 등의 물리 센서의 경우 사생활 침해 가능성이 낮으며 단시간 내에 충분한 양의 데이터를 수집할 수 있다. 본 연구에서는 이러한 점에 주목하여, 스마트폰 상의 다종 물리 센서 데이터만을 활용, 딥러닝 모델에 기반을 둔 사용자의 동행 상태 인식 방법론을 제안한다. 사용자의 동행 여부 및 대화 여부를 분류하는 동행 상태 분류 모델은 컨볼루션 신경망과 장단기 기억 순환 신경망이 혼합된 구조를 지닌다. 먼저 스마트폰의 다종 물리 센서에서 수집한 데이터에 존재하는 타임 스태프의 차이를 상쇄하고, 정규화를 수행하여 시간에 따른 시퀀스 데이터 형태로 변환함으로써 동행 상태분류 모델의 입력 데이터를 생성한다. 이는 컨볼루션 신경망에 입력되며, 데이터의 시간적 국부 의존성이 반영된 요인 지도를 출력한다. 장단기 기억 순환 신경망은 요인 지도를 입력받아 시간에 따른 순차적 연관 관계를 학습하며, 동행 상태 분류를 위한 요인을 추출하고 소프트맥스 분류기에서 이에 기반한 최종적인 분류를 수행한다. 자체 제작한 스마트폰 애플리케이션을 배포하여 실험 데이터를 수집하였으며, 이를 활용하여 제안한 방법론을 평가하였다. 최적의 파라미터를 설정하여 동행 상태 분류 모델을 학습하고 평가한 결과, 동행 여부와 대화 여부를 각각 98.74%, 98.83%의 높은 정확도로 분류하였다.