• Title/Summary/Keyword: entrainment velocity

Search Result 122, Processing Time 0.028 seconds

Effects of Oxidizer Inlet Velocity on NO Emission characteristics of 0.2MW Oxy-Fuel Combustor (산화제 입구 속도에 따른 0.2MW 순산소 연소기의 NO 배출 특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.63-68
    • /
    • 2006
  • Effects of oxidizer inlet velocity on NO emission characteristics of 0.2MW oxy-fuel combustor have been experimentally investigated. The NO formation process in the oxy-fuel combustion is extremely sensitive even for the small fraction of nitrogen in oxidizer. By increasing the oxidizer velocity, flame length is reduced due to the enhanced turbulent mixing. The increased oxidizer velocity also results in the decreased flame temperature through the elevated entrainment rate of the recirculated product and the corresponding NO emission is drastically decreased. Experimental results clearly indicate that the entrained product gases play a crucial role to decrease the temperature at the flame zone and the post flame zone where the thermal NO is mainly formed.

  • PDF

AIR ENTRAINMENT AND ENERGY DISSIPATION AT STEPPED DROP STRUCTURE

  • Kim Jin Hong
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.195-206
    • /
    • 2004
  • This paper deals with oxygen transfer by air entrainment and energy dissipations by flow characteristics at the stepped drop structure. Nappe flow occurred at low flow rates and for relatively large step height. Dominant flow features included an air pocket, a free-falling nappe impact and a subsequent hydraulic jump on the downstream step. Most energy was dissipated by nappe impact and in the downstream hydraulic jump. Skimming flow occurred at larger flow rates with formation of recirculating vortices between the main flow and the step comers. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number. It was more related to the flow discharge than to the Froude number. Energy dissipations in both cases of nappe flow and skimming flow were proportional to the step height and were inversely proportional to the overflow depth, and were not proportional to the step slope. The stepped drop structure was found to be efficient for water treatment associated with substantial air entrainment and for energy dissipation.

  • PDF

Combustion Characteristics for Varying Flow Velocity on Methane/Oxygen Diffusion Flames (메탄 산소 확산화염에서 유속 변화에 따른 연소특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1277-1284
    • /
    • 2005
  • The combustion characteristics of methane oxygen diffusion flames have been investigated to give basic information for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since the small amount of nitrogen is included from the current low cost oxygen production process. Flame lengths decreased with increasing fuel or oxygen velocity because of the enhancement of mixing effect. Correlation equation between flame length and turbulent kinetic energy was proposed. NOx concentration was reduced with increasing fuel or oxygen velocity because of the enhanced entrainment of the product gas into flame zone as well as the reduction of residence time in combustion zone.

Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (III) - Mechanism of Velocity Recovery - (톱니형 휜이 부착된 원주의 근접후류특성 연구 (III) - 속도회복 메카니즘에 관하여 -)

  • Ryu, Byong-Nam;Kim, Kyung-Chun;Boo, Jung-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.347-356
    • /
    • 2003
  • The characteristics of near wakes of circular cylinders with serrated fins are investigated experimentally using a hot-wire anemometer for various freestream velocities. Near wake structures of the fin tubes are observed using a phase average technique. With increasing fin height and decreasing fin pitch. oscillation of streamwise velocity increases. It file oscillation of lateral velocity decreases. The time averaged V-component velocity distribution of the finned tube is contrary to that of the circular cylinder due to the different strength of entrainment flow. This strength is affected by the distance of (equation omitted) = 1.0 contour lines. (equation omitted) = 1.0 contour line approaches to the wake center line when the fin density is increased. When the distance between (equation omitted) = 1.0 contour lines comes close the shear force should be increased and the flow toward the wake center line can be more strengthened because of the shear force. Factors related to the velocity recovery in the near wake of the finned tube are attributed to tile turbulent intensity, the boundary layer thickness. the position and strength of entrainment process.

A study on the exhaust gas recirculation in a MILD combustion furnace by using a Venturi nozzle (MILD 이용한 배기가스 재순환에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.413-419
    • /
    • 2013
  • The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of venturi nozzle geometrical parameters, nozzle position, nozzle gap between high pressure air nozzle and venturi nozzle, and with the change of high pressure nozzle inlet velocity. The entrainment flow rate for the case with the high pressure air nozzle attached at the exhaust gas wall has relatively small change with the change of nozzle gap. That for the case with the high pressure air nozzle exposed to the exhaust gas has monotonically increase with the change of nozzle gap. The flow rate ratio of entrainment flow rate has considerably increase tendency with relatively lower air inlet velocity, on the other hand, that with relatively higher air inlet velocity could be seen relatively small increase.

Performance improvement of wave plate mist eliminator through geometry modification (Wave plate 습분제거기의 형상 변경을 통한 성능 개선)

  • Jung-Hun, Noh;Min-Cheol, Cho;Seung-Jong, Lee
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.97-107
    • /
    • 2022
  • The geometry of popular wave plate type mist eliminator for the wet flue gas desulfurization process was improved, fabricated, and experimentally evaluated. A Mist eliminator is a type of inertial particle collector which collection efficiency is proportional to the velocity of the gas phase. However, as the amount of re-entrainment is also proportional to the gas phase velocity, there is a limitation for the gas phase flow rate. Re-entrainment is one of the most important issues in a mist eliminator and is likely to occur as the input of the liquid phase and flow rate of the gas phase increase. In order to resolve this problem, the projection angle of the improved mist eliminator is set to 30° from the conventional one while maintaining the cross-section. With low flow rate conditions, the modified mist eliminator showed a similar pressure drop and overall collection efficiency. However, with conditions in which re-entrainment is obviously occurring, the modified mist eliminator showed better performance in draining droplets than the conventional one. As a result, the modified mist eliminator showed higher overall collection efficiency.

Characteristics of Water Spray for Extinguishment of Gasoline Pool Fire (가솔린 화재의 소화를 위한 수분무의 특성에 관한 실험적 연구)

  • jang, Yong-Jae;Kim, Myung-Bae;Kim, Yu
    • Fire Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.10-16
    • /
    • 1995
  • This study discribes characteristics of water spray for extinguishment of gasoline fire. Experiments are carried out for the gasoline pool fire nth the atomizing nozzles. Droplet size, spray pressure, amount of water which reaches the flame base and velocity of water spray are measured to find extinguishment conditions. Air entrainment due to the water spray and extinguishing process of gasoline fire by water spray are visualized. Boundary conditions of water spray for extinguishment of gasoline pool fire is quantitatively shown. As the result of experiments, it is found that the velocity of entrainment air and sprayed water are almost same and the water droplets size having small diameter under 40$\mu\textrm{m}$ can not extinguish the fire because too small droplets does not reach the fuel surface.

  • PDF

Characteristics of an Entrainment into the Turbulent Buoyant Jet in a Cross Flow (직교류에서 난류제트로 유입되는 유량에 관한 고찰)

  • Kim, Hyung Min;Kim, Eunpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.342-351
    • /
    • 1999
  • A jet injected normally into a cross flow has been found to have the cross section of a horseshoe shape. It occurs by a twin vortex motion in the region downstream of the jet injection. Such a flow is inherently and highly three-dimensional and numerical calculations should play an important role. The three-dimensional momentum equations with buoyancy effect and energy equation are solved to obtain the velocity distributions, center-line trajectories, cross sectional shape and entrainment. The density difference is sufficiently small, so that the Boussinesq approximation is considered to be valid. The SIMPLE algorithm is applied in a staggered grid system of a calculational domain for the numerical method.

A Study on Combustion Characteristics of Turbulent Methane/Oxygen Diffusion Flames (메탄/산소 난류 확산화염의 연소 특성에 관한 연구)

  • Lee, Sang-Min;Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.118-123
    • /
    • 2004
  • The combustion characteristics of 0.03MW turbulent methane/oxygen diffusion flames have been investigated to give basic informations for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since 3-5% nitrogen is intrinsically included from the current oxygen producing processes. Flame lengths and NOx concentrations were measured by varying flow velocities with and without installing quarls. Flame stabilities are significantly enhanced by oxyfuel combustion in contrast to air-fuel combustion. Flame length decreases with increasing fuel or oxygen velocity because of the enhancement of turbulent mixing. NOx concentration was reduced with increasing flo velocities. This can be attributed to the entrainment of inert product gases into flame decreasing flame temperature. The installation of quarl on the burners rather increased NOx concentration since the quarl blocked the entrainment above the nozzles.

  • PDF