• Title/Summary/Keyword: ensemble vector

Search Result 118, Processing Time 0.024 seconds

Classifying Indian Medicinal Leaf Species Using LCFN-BRNN Model

  • Kiruba, Raji I;Thyagharajan, K.K;Vignesh, T;Kalaiarasi, G
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3708-3728
    • /
    • 2021
  • Indian herbal plants are used in agriculture and in the food, cosmetics, and pharmaceutical industries. Laboratory-based tests are routinely used to identify and classify similar herb species by analyzing their internal cell structures. In this paper, we have applied computer vision techniques to do the same. The original leaf image was preprocessed using the Chan-Vese active contour segmentation algorithm to efface the background from the image by setting the contraction bias as (v) -1 and smoothing factor (µ) as 0.5, and bringing the initial contour close to the image boundary. Thereafter the segmented grayscale image was fed to a leaky capacitance fired neuron model (LCFN), which differentiates between similar herbs by combining different groups of pixels in the leaf image. The LFCN's decay constant (f), decay constant (g) and threshold (h) parameters were empirically assigned as 0.7, 0.6 and h=18 to generate the 1D feature vector. The LCFN time sequence identified the internal leaf structure at different iterations. Our proposed framework was tested against newly collected herbal species of natural images, geometrically variant images in terms of size, orientation and position. The 1D sequence and shape features of aloe, betel, Indian borage, bittergourd, grape, insulin herb, guava, mango, nilavembu, nithiyakalyani, sweet basil and pomegranate were fed into the 5-fold Bayesian regularization neural network (BRNN), K-nearest neighbors (KNN), support vector machine (SVM), and ensemble classifier to obtain the highest classification accuracy of 91.19%.

Comparison of the Machine Learning Models Predicting Lithium-ion Battery Capacity for Remaining Useful Life Estimation (리튬이온 배터리 수명추정을 위한 용량예측 머신러닝 모델의 성능 비교)

  • Yoo, Sangwoo;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.91-97
    • /
    • 2020
  • Lithium-ion batteries (LIBs) have a longer lifespan, higher energy density, and lower self-discharge rates than other batteries, therefore, they are preferred as an Energy Storage System (ESS). However, during years 2017-2019, 28 ESS fire accidents occurred in Korea, and accurate capacity estimation of LIB is essential to ensure safety and reliability during operations. In this study, data-driven modeling that predicts capacity changes according to the charging cycle of LIB was conducted, and developed models were compared their performance for the selection of the optimal machine learning model, which includes the Decision Tree, Ensemble Learning Method, Support Vector Regression, and Gaussian Process Regression (GPR). For model training, lithium battery test data provided by NASA was used, and GPR showed the best prediction performance. Based on this study, we will develop an enhanced LIB capacity prediction and remaining useful life estimation model through additional data training, and improve the performance of anomaly detection and monitoring during operations, enabling safe and stable ESS operations.

Predicting rock brittleness indices from simple laboratory test results using some machine learning methods

  • Davood Fereidooni;Zohre Karimi
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.697-726
    • /
    • 2023
  • Brittleness as an important property of rock plays a crucial role both in the failure process of intact rock and rock mass response to excavation in engineering geological and geotechnical projects. Generally, rock brittleness indices are calculated from the mechanical properties of rocks such as uniaxial compressive strength, tensile strength and modulus of elasticity. These properties are generally determined from complicated, expensive and time-consuming tests in laboratory. For this reason, in the present research, an attempt has been made to predict the rock brittleness indices from simple, inexpensive, and quick laboratory test results namely dry unit weight, porosity, slake-durability index, P-wave velocity, Schmidt rebound hardness, and point load strength index using multiple linear regression, exponential regression, support vector machine (SVM) with various kernels, generating fuzzy inference system, and regression tree ensemble (RTE) with boosting framework. So, this could be considered as an innovation for the present research. For this purpose, the number of 39 rock samples including five igneous, twenty-six sedimentary, and eight metamorphic were collected from different regions of Iran. Mineralogical, physical and mechanical properties as well as five well known rock brittleness indices (i.e., B1, B2, B3, B4, and B5) were measured for the selected rock samples before application of the above-mentioned machine learning techniques. The performance of the developed models was evaluated based on several statistical metrics such as mean square error, relative absolute error, root relative absolute error, determination coefficients, variance account for, mean absolute percentage error and standard deviation of the error. The comparison of the obtained results revealed that among the studied methods, SVM is the most suitable one for predicting B1, B2 and B5, while RTE predicts B3 and B4 better than other methods.

Velocity Field Measurement of Flow Around a Surface-Mounted Vertical Fence Using the Two-Frame PTV System (2-프레임 PTV를 이용한 수직벽 주위 유동장 해석)

  • Baek, Seung-Jo;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1340-1346
    • /
    • 1999
  • The turbulent shear flow around a surface-mounted vertical fence was investigated using the two-frame PTV system. The Reynolds number based on the fence height(H) was 2950. From this study, it is revealed that at least 400 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 100 field data are sufficient for the time-averaged mean velocity information. Various turbulence statistics such as turbulent intensities, turbulence kinetic energy and Reynolds shear stress were calculated from 700 instantaneous velocity vector fields. The fence flow has an unsteady recirculation region behind the fence, followed by a slow relaxation to the flat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about 11.2H. There exists a region of negative Reynolds shear stress near the fence top due to the highly convex (stabilizing) streamline-curvature of the upstream flow. The large eddy structure in the separated shear layer seems to have significant influence on the development of the separated shear layer and the reattachment process.

A gradient boosting regression based approach for energy consumption prediction in buildings

  • Bataineh, Ali S. Al
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.91-101
    • /
    • 2019
  • This paper proposes an efficient data-driven approach to build models for predicting energy consumption in buildings. Data used in this research is collected by installing humidity and temperature sensors at different locations in a building. In addition to this, weather data from nearby weather station is also included in the dataset to study the impact of weather conditions on energy consumption. One of the main emphasize of this research is to make feature selection independent of domain knowledge. Therefore, to extract useful features from data, two different approaches are tested: one is feature selection through principal component analysis and second is relative importance-based feature selection in original domain. The regression model used in this research is gradient boosting regression and its optimal parameters are chosen through a two staged coarse-fine search approach. In order to evaluate the performance of model, different performance evaluation metrics like r2-score and root mean squared error are used. Results have shown that best performance is achieved, when relative importance-based feature selection is used with gradient boosting regressor. Results of proposed technique has also outperformed the results of support vector machines and neural network-based approaches tested on the same dataset.

Viscosity and Diffusion Constants Calculation of n-Alkanes by Molecular Dynamics Simulations

  • Lee, Song-Hi;Chang, Tai-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1590-1598
    • /
    • 2003
  • In this paper we have presented the results for viscosity and self-diffusion constants of model systems for four liquid n-alkanes ($C_{12}, C_{20}, C_{32}, and C_{44}$) in a canonical ensemble at several temperatures using molecular dynamics (MD) simulations. The small chains of these n-alkanes are clearly $<{R_{ee}}^2>/6<{R_g}^2>>1$, which leads to the conclusion that the liquid n-alkanes over the whole temperatures considered are far away from the Rouse regime. Calculated viscosity ${\eta}$ and self-diffusion constants D are comparable with experimental results and the temperature dependence of both ${\eta}$ and D is suitably described by the Arrhenius plot. The behavior of both activation energies, $E_{\eta}$ and $E_D$, with increasing chain length indicates that the activation energies approach asymptotic values as n increases to the higher value, which is experimentally observed. Two calculated monomeric friction constants ${\zeta}$ and ${\zeta}_D$ give a correct qualitative trend: decrease with increasing temperature and increase with increasing chain length n. Comparison of the time auto-correlation functions of the end-to-end vector calculated from the Rouse model for n-dodecane ($C_{12}$) at 273 K and for n-tetratetracontane ($C_{44}$) at 473 K with those extracted directly from our MD simulations confirms that the short chain n-alkanes considered in this study are far away from the Rouse regime.

Sequence driven features for prediction of subcellular localization of proteins (단백질의 세포내 소 기관별 분포 예측을 위한 서열 기반의 특징 추출 방법)

  • Kim, Jong-Kyoung;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.226-228
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives valuable information for inferring the possible function of the protein. For more accurate Prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting . The overall prediction accuracy evaluated by the 5-fold cross-validation reached $88.53\%$ for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful forpredicting subcellular localization of proteins.

  • PDF

Development of benthic macroinvertebrate species distribution models using the Bayesian optimization (베이지안 최적화를 통한 저서성 대형무척추동물 종분포모델 개발)

  • Go, ByeongGeon;Shin, Jihoon;Cha, Yoonkyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.259-275
    • /
    • 2021
  • This study explored the usefulness and implications of the Bayesian hyperparameter optimization in developing species distribution models (SDMs). A variety of machine learning (ML) algorithms, namely, support vector machine (SVM), random forest (RF), boosted regression tree (BRT), XGBoost (XGB), and Multilayer perceptron (MLP) were used for predicting the occurrence of four benthic macroinvertebrate species. The Bayesian optimization method successfully tuned model hyperparameters, with all ML models resulting an area under the curve (AUC) > 0.7. Also, hyperparameter search ranges that generally clustered around the optimal values suggest the efficiency of the Bayesian optimization in finding optimal sets of hyperparameters. Tree based ensemble algorithms (BRT, RF, and XGB) tended to show higher performances than SVM and MLP. Important hyperparameters and optimal values differed by species and ML model, indicating the necessity of hyperparameter tuning for improving individual model performances. The optimization results demonstrate that for all macroinvertebrate species SVM and RF required fewer numbers of trials until obtaining optimal hyperparameter sets, leading to reduced computational cost compared to other ML algorithms. The results of this study suggest that the Bayesian optimization is an efficient method for hyperparameter optimization of machine learning algorithms.

An Intelligent Framework for Feature Detection and Health Recommendation System of Diseases

  • Mavaluru, Dinesh
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.177-184
    • /
    • 2021
  • All over the world, people are affected by many chronic diseases and medical practitioners are working hard to find out the symptoms and remedies for the diseases. Many researchers focus on the feature detection of the disease and trying to get a better health recommendation system. It is necessary to detect the features automatically to provide the most relevant solution for the disease. This research gives the framework of Health Recommendation System (HRS) for identification of relevant and non-redundant features in the dataset for prediction and recommendation of diseases. This system consists of three phases such as Pre-processing, Feature Selection and Performance evaluation. It supports for handling of missing and noisy data using the proposed Imputation of missing data and noise detection based Pre-processing algorithm (IMDNDP). The selection of features from the pre-processed dataset is performed by proposed ensemble-based feature selection using an expert's knowledge (EFS-EK). It is very difficult to detect and monitor the diseases manually and also needs the expertise in the field so that process becomes time consuming. Finally, the prediction and recommendation can be done using Support Vector Machine (SVM) and rule-based approaches.

Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques

  • Kim, Yunhee;Hong, Jiyeon;Shin, Jaewoo;Kim, Bumjoo
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.249-258
    • /
    • 2022
  • A disc cutter is an excavation tool on a tunnel boring machine (TBM) cutterhead; it crushes and cuts rock mass while the machine excavates using the cutterhead's rotational movement. Disc cutter wear occurs naturally. Thus, along with the management of downtime and excavation efficiency, abrasioned disc cutters need to be replaced at the proper time; otherwise, the construction period could be delayed and the cost could increase. The most common prediction models for TBM performance and for the disc cutter lifetime have been proposed by the Colorado School of Mines and Norwegian University of Science and Technology. However, design parameters of existing models do not well correspond to the field values when a TBM encounters complex and difficult ground conditions in the field. Thus, this study proposes a series of machine learning models to predict the disc cutter lifetime of a shield TBM using the excavation (machine) data during operation which is response to the rock mass. This study utilizes five different machine learning techniques: four types of classification models (i.e., K-Nearest Neighbors (KNN), Support Vector Machine, Decision Tree, and Staking Ensemble Model) and one artificial neural network (ANN) model. The KNN model was found to be the best model among the four classification models, affording the highest recall of 81%. The ANN model also predicted the wear rate of disc cutters reasonably well.