• Title/Summary/Keyword: ensemble vector

Search Result 118, Processing Time 0.028 seconds

Wind Prediction with a Short-range Multi-Model Ensemble System (단시간 다중모델 앙상블 바람 예측)

  • Yoon, Ji Won;Lee, Yong Hee;Lee, Hee Choon;Ha, Jong-Chul;Lee, Hee Sang;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.327-337
    • /
    • 2007
  • In this study, we examined the new ensemble training approach to reduce the systematic error and improve prediction skill of wind by using the Short-range Ensemble prediction system (SENSE), which is the mesoscale multi-model ensemble prediction system. The SENSE has 16 ensemble members based on the MM5, WRF ARW, and WRF NMM. We evaluated the skill of surface wind prediction compared with AWS (Automatic Weather Station) observation during the summer season (June - August, 2006). At first stage, the correction of initial state for each member was performed with respect to the observed values, and the corrected members get the training stage to find out an adaptive weight function, which is formulated by Root Mean Square Vector Error (RMSVE). It was found that the optimal training period was 1-day through the experiments of sensitivity to the training interval. We obtained the weighted ensemble average which reveals smaller errors of the spatial and temporal pattern of wind speed than those of the simple ensemble average.

Asymmetric Semi-Supervised Boosting Scheme for Interactive Image Retrieval

  • Wu, Jun;Lu, Ming-Yu
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.766-773
    • /
    • 2010
  • Support vector machine (SVM) active learning plays a key role in the interactive content-based image retrieval (CBIR) community. However, the regular SVM active learning is challenged by what we call "the small example problem" and "the asymmetric distribution problem." This paper attempts to integrate the merits of semi-supervised learning, ensemble learning, and active learning into the interactive CBIR. Concretely, unlabeled images are exploited to facilitate boosting by helping augment the diversity among base SVM classifiers, and then the learned ensemble model is used to identify the most informative images for active learning. In particular, a bias-weighting mechanism is developed to guide the ensemble model to pay more attention on positive images than negative images. Experiments on 5000 Corel images show that the proposed method yields better retrieval performance by an amount of 0.16 in mean average precision compared to regular SVM active learning, which is more effective than some existing improved variants of SVM active learning.

Multiclass LS-SVM ensemble for large data

  • Hwang, Hyungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1557-1563
    • /
    • 2015
  • Multiclass classification is typically performed using the voting scheme method based on combining binary classifications. In this paper we propose multiclass classification method for large data, which can be regarded as the revised one-vs-all method. The multiclass classification is performed by using the hat matrix of least squares support vector machine (LS-SVM) ensemble, which is obtained by aggregating individual LS-SVM trained on each subset of whole large data. The cross validation function is defined to select the optimal values of hyperparameters which affect the performance of multiclass LS-SVM proposed. We obtain the generalized cross validation function to reduce computational burden of cross validation function. Experimental results are then presented which indicate the performance of the proposed method.

Anomaly-Based Network Intrusion Detection: An Approach Using Ensemble-Based Machine Learning Algorithm

  • Kashif Gul Chachar;Syed Nadeem Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.107-118
    • /
    • 2024
  • With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.

An ensemble learning based Bayesian model updating approach for structural damage identification

  • Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.61-81
    • /
    • 2023
  • This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.

Predicting stock price direction by using data mining methods : Emphasis on comparing single classifiers and ensemble classifiers

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.111-116
    • /
    • 2017
  • This paper proposes a data mining approach to predicting stock price direction. Stock market fluctuates due to many factors. Therefore, predicting stock price direction has become an important issue in the field of stock market analysis. However, in literature, there are few studies applying data mining approaches to predicting the stock price direction. To contribute to literature, this paper proposes comparing single classifiers and ensemble classifiers. Single classifiers include logistic regression, decision tree, neural network, and support vector machine. Ensemble classifiers we consider are adaboost, random forest, bagging, stacking, and vote. For the sake of experiments, we garnered dataset from Korea Stock Exchange (KRX) ranging from 2008 to 2015. Data mining experiments using WEKA revealed that random forest, one of ensemble classifiers, shows best results in terms of metrics such as AUC (area under the ROC curve) and accuracy.

Proper Noun Embedding Model for the Korean Dependency Parsing

  • Nam, Gyu-Hyeon;Lee, Hyun-Young;Kang, Seung-Shik
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • Dependency parsing is a decision problem of the syntactic relation between words in a sentence. Recently, deep learning models are used for dependency parsing based on the word representations in a continuous vector space. However, it causes a mislabeled tagging problem for the proper nouns that rarely appear in the training corpus because it is difficult to express out-of-vocabulary (OOV) words in a continuous vector space. To solve the OOV problem in dependency parsing, we explored the proper noun embedding method according to the embedding unit. Before representing words in a continuous vector space, we replace the proper nouns with a special token and train them for the contextual features by using the multi-layer bidirectional LSTM. Two models of the syllable-based and morpheme-based unit are proposed for proper noun embedding and the performance of the dependency parsing is more improved in the ensemble model than each syllable and morpheme embedding model. The experimental results showed that our ensemble model improved 1.69%p in UAS and 2.17%p in LAS than the same arc-eager approach-based Malt parser.

Dynamic Recommendation System of Web Information Using Ensemble Support Vector Machine and Hybrid SOM (앙상블 Support Vector Machine과 하이브리드 SOM을 이용한 동적 웹 정보 추천 시스템)

  • Yoon, Kyung-Bae;Choi, Jun-Hyeog
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.433-438
    • /
    • 2003
  • Recently, some studies of a web-based information recommendation technique which provides users with the most necessary information through websites like a web-based shopping mall have been conducted vigorously. In most cases of web information recommendation techniques which rely on a user profile and a specific feedback from users, they require accurate and diverse profile information of users. However, in reality, it is quite difficult to acquire this related information. This paper is aimed to suggest an information prediction technique for a web information service without depending on the users'specific feedback and profile. To achieve this goal, this study is to design and implement a Dynamic Web Information Prediction System which can recommend the most useful and necessary information to users from a large volume of web data by designing and embodying Ensemble Support Vector Machine and hybrid SOM algorithm and eliminating the scarcity problem of web log data.

Parameter Tuning in Support Vector Regression for Large Scale Problems (대용량 자료에 대한 서포트 벡터 회귀에서 모수조절)

  • Ryu, Jee-Youl;Kwak, Minjung;Yoon, Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In support vector machine, the values of parameters included in kernels affect strongly generalization ability. It is often difficult to determine appropriate values of those parameters in advance. It has been observed through our studies that the burden for deciding the values of those parameters in support vector regression can be reduced by utilizing ensemble learning. However, the straightforward application of the method to large scale problems is too time consuming. In this paper, we propose a method in which the original data set is decomposed into a certain number of sub data set in order to reduce the burden for parameter tuning in support vector regression with large scale data sets and imbalanced data set, particularly.

Medical Image Retrieval based on Multi-class SVM and Correlated Categories Vector

  • Park, Ki-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.772-781
    • /
    • 2009
  • This paper proposes a novel algorithm for the efficient classification and retrieval of medical images. After color and edge features are extracted from medical images, these two feature vectors are then applied to a multi-class Support Vector Machine, to give membership vectors. Thereafter, the two membership vectors are combined into an ensemble feature vector. Also, to reduce the search time, Correlated Categories Vector is proposed for similarity matching. The experimental results show that the proposed system improves the retrieval performance when compared to other methods.