• Title/Summary/Keyword: ensemble flow

Search Result 129, Processing Time 0.021 seconds

Forecasting Monthly Runoff Using Ensemble Streamflow Prediction (앙상블 예측기법을 통한 유역 월유출 전망)

  • Lee, Sang-Jin;Kim, Joo-Cheol;Hwang, Man-Ha;Maeng, Seung-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • In this study the validities of runoff prediction methods are reviewed around ESP (Ensemble Streamflow Prediction) techniques. The improvements of runoff predictions on Yongdam river basin are evaluated by the comparison of different prediction methods including ESP incorporated with qualitative meteorological outlooks provided by meteorological agency as well as the runoff forecasting based on the analysis of the historical rainfall scenarios. As a result it is assessed that runoff predictions with ESP may give rise to more accurate results than the ordinary historical average runoffs. In deed the latter gave the mean of yearly absolute error as to be 60.86 MCM while the errors of the former ones amounted to 44.12 MCM (ESP) and 42.83 MCM (ESP incorporated with qualitative meteorological outlooks) respectively. In addition it is confirmed that ESP incorporated with qualitative meteorological outlooks could improve the accuracy of the results more and more. Especially the degree of improvement of ESP with meteorological outlooks shows rising by 10.8% in flood season and 8% in drought season. Therefore the methods of runoff predictions with ESP can be further used as the basic forecasting information tool for the purpose of the effective watershed management.

Micro-PIV Measurements of In Vitro Blood Flow in a Micro-Channel

  • Park, Cheol-Woo;Lee, Sang-Joon;Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.30-35
    • /
    • 2003
  • Flow characteristics of blood flow in a micro channel were investigated experimentally using a micro-PIV (Particle Image Velocimetry) velocity field measurement technique. The main objective of this study was to understand the real blood flow in micron-sized blood vessels. The Reynolds number based on the hydraulic diameter of micro-channel for deionized (DI) water was about Re=0.34. For each experimental condition, 100 instantaneous velocity fields were captured and ensemble-averaged to get the spatial distributions of mean velocity. In addition, the motion of RBC (Red Blood Cell) was visualized with a high-speed CCD camera. The captured flow images of nano-scale fluorescent tracer particles in DI water were clear and gave good velocity tracking-ability. However, there were substantial velocity variations in the central region of real blood flow in a micro-channel due to the presence of red blood cells.

  • PDF

Effect of Stroke Changes on the In-Cylinder Flow Field in a Four-Valve SI Engines (Stroke변화가 Four-Valve SI 엔진 실린더내 유동장에 미치는 영향)

  • 유성출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • The flow field inside a cylinder of four-valve Sl engine was investigated quantitatively using a three-dimensional Laser Doppler Velocimetry system, to determine how stroke changes affect the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, the sane intake manifold, engine head, cylinder, and the piston were used to examine the flow characteristics in different strokes. Quantification of the flow field was done by calculating three major parameters which are believed to adequately characterize in cylinder motion. These quantities were TKE, tumble and swirl ratios. The LDV results reveal that flow patterns are similar, the flow velocities scale with piston speed but another parameters such as TKE, and tumble and swirl numbers are not the same for different stroke systems.

  • PDF

Approximation for the coherent structures in the planar jet flow (평면 제트류 응집구조의 근사적 표현에 관한 연구)

  • 이찬희;이상환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.751-762
    • /
    • 1995
  • The snapshot method is introduced to approximate the coherent structures of planar jet flow. The numerical simulation of instantaneous flow field is analyzed by SIMPLE algorithm. An ensemble of realizations is collected using a sampling condition that corresponds to the passage of a large scale vortex at positions 4 and 6 diameters downstream from the nozzle. With snapshot mothod we could treat the data efficiently and approximate coherent structures inhered in the planar jet flow successfully 94% of total turbulent kinetic energy with 10 terms of Karhunen-Loeve expansions. Finally, In accordance with the recent trend to try to explain and model turbulence phenomena with the existence of coherent structures, in the present study, we express the underlying coherent structures of planar jet flow in the minimum number of modes by calculating Karhunen-Loeve expansions in order to improve to understanding of jet flow and to make the information storage and management in computers easier.

A study on the measurement and characterization of tubulent flow inside an engine cylinder (엔진 실린더내 난류유동 측정과 정량화방법에 관한 연구)

  • 강건용;엄종호;김용선
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.39-47
    • /
    • 1992
  • The engine combustion is one of the most important process affecting performance and emissions. One effective way to improve the engine combustion is to control motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence in a gasoline engine. This paper describes the measurement and characterization of mean velocity and turbulence intensity inside the cylinder of a 4-valve gasoline engine using laser Doppler velocimeter(LDV) under motoring(non-firing) conditions. Since the measured LDV data in each cycle show small cycle variation during compression stroke in the tested engine, the mean velocity and turbulence intensity are calculated by ensemble averaging method neglecting cycle variation effects. In the ensemble averaging method, the effects of the calculation window, in which velocities are assumed as the same crank angle, on mean velocity and turbulence intensity are fully investigated. In addition, the effects of measuring point on the flow characteristics are studied. With large calculation window, the mean velocity is shown to be less sensitive with respect to crank angle and turbulence intensity decrease in its absolute amplitude. When the piston approch to the top dead center of compression, the turbulence intensity is found to be homogeneous in the cylinder.

  • PDF

Red Blood Cell Velocity Field in Rat Mesenteric Arterioles Using Micro PIV Technique

  • Sugii, Y;Nishio, S;Okamoto, K;Nakano, A;Minamiyama, M;Niimi, H
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • As endothelial cells are subject to flow shear stress, it is important to determine the detailed velocity distribution in microvessels in the study of mechanical interactions between blood and endothelium. This paper describes a velocity field of the arteriole in the rat mesentery using an intravital microscope and high-speed digital video system obtained by a highly accurate PIV technique. Red blood cells (RBCs) velocity distributions with spatial resolutions of $0.8{\times}0.8{\mu}m$ were obtained even near the wall in the center plane of the arteriole. By making ensemble-averaged time-series of velocity distributions, velocity profiles over different cross-sections were calculated for comparison. The shear rate at the vascular wall also evaluated on the basis of the ensemble-averaged profiles. It was shown that the velocity profiles were blunt in the center region of the vessel cross-section while they were steep in the near wall region. The wall shear rates were significantly small, compared with those estimated from the Poiseuille profiles.

  • PDF

Flow Characteristics of Centrifugal Impeller Exit under Rotating Stall (선회실속하의 원심 임펠러 출구 유동 특성)

  • Shin, You-Hwan;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.5-12
    • /
    • 1999
  • This study presents the measured unsteady flctuation of impeller discharge flow for a centrifugal compressor in an unstable operating region. The characteristics of the blade-to-blade flow at rotating stall onset were investigated by measuring unsteady velocity fluctuations at several different diffuser axial distances using a hot wire anemometer. The flow characteristics in terms of the radial and tangential velocity components and the flow angle distribution at the impeller exit were analyzed using phase-locked ensemble averaging techniques. As a result, increase or decrease of the radial velocity component during the rotating stall is dominated by that of the suction side. The radial velocity distributions show the opposite trends in the regions where the radial velocity during rotating stall onset increases and decreases.

  • PDF

Flow Characteristics of centrifugal Impeller Exit Under Rotating Stall (선회실속하의 원심 임펠러 출구 유동 특성)

  • Shin, You-Hwan;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.129-134
    • /
    • 1998
  • This study presents the measured unsteady fluctuation of impeller discharge flow for a centrifugal compressor in unstable operating region. The characteristics of the blade-to-blade flow at rotating stall onset were investigated by measuring unsteady velocity fluctuations at several different diffuser axial distances using a hot wire anemometer. The flow characteristics in terms of the radial and tangential velocity components and the flow angle distribution at the impeller exit were analyzed using phase-locked ensemble averaging techniques. As a result, increase or decrease of the radial velocity component during the rotating stall is dominated by that on the suction side. The radial velocity distributions show the opposite trends in the regions where the radial velocity during rotating stall onset increases and decreases.

  • PDF

A Study on the Characteristics of In-Cylinder Air Flow with 3-D LDV Measurement (3차원 LDV를 이용한 실린더내 공기 유동특성에 관한 연구)

  • Yoo, S.C.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2006
  • In-cylinder flows in a motored 3.5L four-valve SI engine were investigated quantitatively using three-component LDV system, to determine how engine configuration affects the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, two distinct intake/piston arrangements were used to examine the flow characteristics. Quantification of the flow field was done by calculating two major parameters which are believed to characterize adequately in-cylinder motion. These quantities were turbulent kinetic energy(TKE) and tumble ratio in each plane at each crank angle. The results showed that in-cylinder flow pattern is dominated by the intake effects and two counter rotating vortices, developed during the intake stroke, produced relatively low tumble ratio. Therefore, the applicability of these quantities should be carefully considered when evaluating characteristics resulting from the complex in-cylinder flow motions.

  • PDF

Prediction of English Premier League Game Using an Ensemble Technique (앙상블 기법을 통한 잉글리시 프리미어리그 경기결과 예측)

  • Yi, Jae Hyun;Lee, Soo Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.5
    • /
    • pp.161-168
    • /
    • 2020
  • Predicting outcome of the sports enables teams to establish their strategy by analyzing variables that affect overall game flow and wins and losses. Many studies have been conducted on the prediction of the outcome of sports events through statistical techniques and machine learning techniques. Predictive performance is the most important in a game prediction model. However, statistical and machine learning models show different optimal performance depending on the characteristics of the data used for learning. In this paper, we propose a new ensemble model to predict English Premier League soccer games using statistical models and the machine learning models which showed good performance in predicting the results of the soccer games and this model is possible to select a model that performs best when predicting the data even if the data are different. The proposed ensemble model predicts game results by learning the final prediction model with the game prediction results of each single model and the actual game results. Experimental results for the proposed model show higher performance than the single models.