해양파랑 예측에 있어 단일 수치모델의 불확실성을 보완하기 위하여 앙상블 기법을 적용한 지역 파랑예측시스템을 구축하였다. 기상청 전지구 대기 수치모델의 확률예측시스템에서 생산되는 24개 앙상블 해상풍을 입력자료로 이용, 87시간까지 파랑 예측자료를 생산하였으며, 기상청 계류부이 관측자료와 다양한 통계방법을 적용하여 검증을 수행하였다. 2일예측 이후의 앙상블 예측평균의 평균제곱근오차(RMSE)는 단일모델예측에 비하여 향상된 결과를 보였으며, 특히 3일예측의 경우 단일모델예측 대비 RMSE가 약 15% 정도 향상되었다. 이것은 앙상블 기법이 수치모델의 불확실성을 감소시켜 예측정확도 향상에 크게 기여한 것으로 보인다. ROC(Relative Operating Characteristic) 분석결과, 전체 예측시간에 대하여 ROC 영역이 모두 0.9 이상을 보여 확률예측 성능이 뛰어남을 보였으며, 앙상블 파랑예측 결과가 해상 확률예보에 유용하게 활용될 수 있을 것으로 판단된다.
본 연구에서는 국내 도시가스 인수량에 대한 예측 모델을 개발하였다. 국내의 도시가스 회사는 KOGAS에 차년도 수요를 예측하여 보고해야 하므로 도시가스 인수량 예측은 도시가스 회사에 중요한 사안이다. 도시가스 사용량에 영향을 미치는 요인은 용도구분에 따라 다소 상이하나, 인수량 데이터는 용도별 구분이 어렵기 때문에 특정 용도에 관계없이 영향을 주는 요인으로 외기온도를 고려하여 모델개발을 실시하였다.실험 및 검증은 JB주식회사의 2008년부터 2018년까지 총 11년 치 도시가스 인수량 데이터를 사용하였으며, 전통적인 시계열 분석 중 하나인 ARIMA(Auto-Regressive Integrated Moving Average)와 딥러닝 기법인 LSTM(Long Short-Term Memory)을 이용하여 각각 예측 모델을 구축하고 두 방법의 단점을 최소화하기 위하여 다양한 앙상블(Ensemble) 기법을 사용하였다. 본 연구에서 제안한 일별 예측의 오차율 절댓값 평균은 Ensemble LSTM 기준 0.48%, 월별 예측의 오차율 절댓값 평균은 2.46%, 1년 예측의 오차율 절댓값 평균은 5.24%임을 확인하였다.
앙상블 기법은 기계학습에서 다수의 알고리즘을 사용하여 더 좋은 성능을 내기 위해 사용하는 방법이다. 본 논문에서는 앙상블 기법에서 많이 사용되는 부스팅과 배깅에 대해 소개를 하고, 서포트벡터 회귀, 방사기저함수 네트워크, 가우시안 프로세스, 다층 퍼셉트론을 이용하여 설계한다. 추가적으로 순환신경망과 MOHID 수치모델을 추가하여 실험을 진행한다. 실험적 검증를 위해 사용하는 뜰개 데이터는 7 개의 지역에서 관측된 683 개의 관측 자료다. 뜰개 관측 자료를 이용하여 6 개의 알고리즘과의 비교를 통해 앙상블 기법의 성능을 검증한다. 검증 방법으로는 평균절대오차를 사용한다. 실험 방법은 배깅, 부스팅, 기계학습을 이용한 앙상블 모델을 이용하여 진행한다. 각 앙상블 모델마다 동일한 가중치를 부여한 방법, 차등한 가중치를 부여한 방법을 이용하여 오류율을 계산한다. 가장 좋은 오류율을 나타낸 방법은 기계학습을 이용한 앙상블 모델로서 6 개의 기계학습의 평균에 비해 61.7%가 개선된 결과를 보였다.
현재 의료 현장에서 초음파 진단은 과거 청진기와 같다고 할 수 있다. 그러나 초음파의 특성상 검사자의 숙련도에 따라 결과 예측이 불확실하다는 단점을 가진다. 따라서 본 논문에서는 이런 문제를 해결하기 위해 딥러닝 기술을 기반으로 초음파 검사 중 간병변 탐지의 정확도를 높이고자 한다. 제안 논문에서는 CNN 모델과 앙상블 모델을 이용해 병변 분류의 정확도 비교 실험하였다. 실험결과 CNN 모델에서 분류 정확도는 평균 82.33%에서 앙상블모델의 경우 평균 89.9%로 약 7% 높은 것을 확인하였다. 또한 앙상블 모델이 평균 ROC커브에서도 0.97로 CNN모델보다 약 0.4정도 높은 것을 확인하였다.
본 연구에서는 shot noise process 기반 강우-유출 모형(이하 강우-유출 모형)을 이용하여 유출 앙상블 멤버를 생성하는 방법을 제안하였다. 아울러 제안된 방법을 적용하여 대림 2, 구로 1, 중동 빗물펌프장 등 3개 배수유역에 대한 유출 앙상블 멤버를 생성하고, 이를 관측 유출량과 비교해 보았다. 강우-유출 모형의 매개변수는 Kerby 공식, Kraven II 공식, Russel 공식 및 수정합리식의 개념을 이용하여 추정하였다. 강우-유출 모형 매개변수의 난수 발생을 위해서는 감마분포와 지수분포를 이용하였다. 특히, 감마분포의 경우에는 평균과 표준편차의 관계를 어떻게 설정하느냐에 따라 다양한 난수 발생이 가능함을 확인하였다. 생성된 유출 앙상블과 관측 유출량과의 비교 결과, 표준편차가 평균의 두 배인 감마 분포를 이용하여 만든 유출 앙상블이 관측 유출량을 가장 적절히 포괄함을 확인하였다.
보험금 예측은 보험사의 리스크 관리와 재무 건전성 유지를 위한 핵심 과제 중 하나이다. 정확한 보험금 예측을 통해 보험사는 적정한 보험료를 책정하고, 예상 외의 손실을 줄이며, 고객 서비스의 질을 향상시킬 수 있다. 본 연구에서는 앙상블 러닝 기법을 적용하여 보험금 예측 모델의 성능을 향상시키고자 한다. 랜덤 포레스트(Random Forest), 그래디언트 부스팅 머신(Gradient Boosting Machine, GBM), XGBoost, Stacking, 그리고 제안한 동적 가중치 할당 모델(Dynamic Weighted Ensemble, DWE) 모델을 사용하여 예측 성능을 비교 분석하였다. 모델의 성능 평가는 평균 절대 오차(MAE), 평균 제곱근 오차(MSE), 결정 계수(R2) 등을 사용하여 수행되었다. 실험 결과, 동적 가중치 할당 모델이 평가 지표에서 가장 우수한 성능을 보였으며, 이는 랜덤 포레스트와 XGBoost, LR, LightGBM의 예측 결과를 결합하여 최적의 예측 성능을 도출한 결과이다. 본 연구는 앙상블 러닝 기법이 보험금 예측의 정확성을 높이는 데 효과적임을 입증하며, 보험업계에서 인공지능 기반 예측 모델의 활용 가능성을 제시한다.
본 연구에서는 자극에 대한 유발전위 발현시점의 변화와 유발전위에 혼입된 무작위 잡음을 시간지연현상과 자음혼입 가법모형으로 모델링 하였다. 동기시점 불일치에 따른 평균화 처리과정의 유발전위 신호의 왜곡을 개선하기 위하여 시간지연추정을 잡음제거 위너필터에 결합한 복합적 시간지연보상-잡음개선 위너필터-앙상블평균 처리기법 (DWEA: Delay compensated Wiener filtered ensemble averaging)을 적용하였다. 제시한 방법의 성능은 임의의 시간지연과 크기의 변화를 변화시킨 백색잡음 데이터를 합성한 대리모의실험을 통하여 검증하였다. 모의실험데이터에 대하여 DWEA 방법이 위너필터링앙상블평균 방법과 기존의 앙상블평균방법보다 우수 하였다. DWEA 방법은 10% MSE 오차한계에 대하여 잡음이득 7까지 동작 가능하였다. 실험결과를 통하여 DWEA 방법은 잡음의 혼입과 동기 불일치 현상을 보이는 유발전위의 신호개선의 가능성을 제시하였다.
We applied PIV method to obtain instantaneous and ensemble averaged velocity fields from the first row to the fifth row of a staggered tube bundle. The Reynolds number based on the tube diameter and the maximum velocity was set to be 4,000. Remarkably different natures are observed in the developing bundle flow. Such differences are depicted in the mean recirculating bubble length and the vorticity distributions. The jet-like flow seems to be a dominant feature after the second row and usually skew. However, the ensemble averaged fields show symmetric profiles and the flow characteristics between the third and fourth measuring planes are not so different. comparison between the PIV data and the RANS simulation yields severe disagreement in spite of the same Reynolds number. It can be explained that the distinct jet-like unsteady motions are not to be accounted in th steady numerical analysis.
저질의 부유 현상이 일련의 쇄파라고 하는 파동 현상에 어떠한 형태로 연동하는가를 면밀히 조사하기 위하여 현지해안의 쇄파대내에 주 관측지점을 설치하고 부유사 농도와 유속, 수위변동 등의 관련 파랑 제원을 계측하였다. 분석을 위해 수위변동, 유속변동치의 부유사농도에 대한 상관관계를 조사하였으며, 상관이 탁월한 주기대에 대한 ensemble 평균 분석으로 유속 및 수위변동의 위상에 따른 부유사 농도의 변화와의 관계를 명백히 하여 다음의 결론을 얻었다. 1) 부유사의 농도 변동은 유속 및 수위변동의 에너지가 가장 큰 장주기 성분(100s)에 있서 상관이 높았으며, 2) 또한, 1차mode의 장주기중복파의 유속 성분이 해안으로 향하여 가속하는 위상 즉, 수면 경사가 상대적으로 해안선측보다 외해측이 높은 위상에서 부유사 농도가 가장 높아짐을 명백히 하였다.
Flows in the combustion chamber near the spark plug are measured using LDv.A single cylinder DOHC S.I. engine of compression ratio 9.5:1 with a transparent quartz window piston is used. Combustion chamber shape is semi-wedge type. Measured data are analyzed using the ensemble averaged analysis and the cycle resolved analysis which uses FFT Filtering. Turbulent intensity and mean velocity are studied in the main flow direction and the normal to main flow direction as a function of engine speeds. The results shows that the turbulent intensity obtained by the ensemble averaged analysis is greater than that calculated by the cycle resolved analysis. Especially, the ensemble averaged analysis shows increase in turbulence at the end of compression stroke although the cycle resolved analysis shows increase only in the cycle-by-cycle variation with no noticeable increase in turbulence. The mean velocity in the main flow direction increase as engine speed increase. But the mean velocity normal to the main flow does not show such increase. Turbulent intensity in both direction increase in proportion to engine speeds. The magnitude of turbulent intensity is about 0.3 ~ 0.4 times the mean piston speeds at the end of the compression stroke.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.