• Title/Summary/Keyword: enhancement factors

Search Result 931, Processing Time 0.028 seconds

Performance enhancement of perovskite solar cells using Ag nanoparticles via aerosol technology (에어로졸 기술로 제작된 은 나노 입자를 활용한 페로브스카이트 태양전지 성능 향상 연구)

  • Sua Park;Inyong Park;Dae Hoon Park;Bangwoo Han;Gunhee Lee;Min-cheol Kim
    • Particle and aerosol research
    • /
    • v.19 no.2
    • /
    • pp.21-30
    • /
    • 2023
  • Solar cells, converting abundant solar energy into electrical energy, are considered crucial for sustainable energy generation. Recent advancements focus on nanoparticle-enhanced solar cells to overcome limitations and improve efficiency. These cells offer two potential efficiency enhancements. Firstly, plasmonic effects through nanoparticles can improve optical performance by enhancing absorption. Secondly, nanoparticles can improve charge transport and reduce recombination losses, enhancing electrical performance. However, factors like nanoparticle size, placement, and solar cell structure influence the overall performance. This study evaluates the performance of silver nanoparticles incorporated in a p-i-n structure of perovskite solar cells, generated via aerosol state by the evaporation and condensation system. The silver nanoparticles deposited between the hole transport layer and transparent electrode form nanoparticle embedded transport layer (NETL). The evaluation of the optoelectronic properties of perovskite devices using NETL demonstrates their potential for improving efficiency. The findings highlight the possibility of nanoparticle incorporation in perovskite solar cells, providing insights for sustainable energy generation.

Promoting research integrity in sport and leisure studies: From the perspectives of academia (체육학 연구에서의 연구부정행위 방지를 위한 근거이론적 접근)

  • Lee, Weon-il;Jin, Yeon-Kyung;Yi, Kyoung June
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.4
    • /
    • pp.227-240
    • /
    • 2016
  • Research misconduct has been a strong societal concern in sport and leisure studies. However, little is known about the complex mechanisms and ways of promoting research integrity. This study aimed at exploring the ways in which research integrity in sport and leisure studies could be established from the perspectives of academia. Employing a grounded theory approach, 13 academics and graduate students were invited to the study. Data were collected primarily through focus group and one-on-one follow-up interviews. Perceived negative factors contributing to research misconduct within socio-political/socio-environmental, socio-cultural, and personal contexts were identified. Three approaches, (a) top-down approach, (b) bottom-up approach, and (c) continuous education, as well as subsequent practical strategies were also suggested for the enhancement of research integrity within the field. This paper provided empirical knowledge regarding barriers to and opportunities for improving research integrity in sport and leisure studies.

Exploring the Moderating Effect of Job Crafting in the Relationship between Child-care Teachers' Flourish and Care that Respects the Rights of Child (보육교사의 플로리시와 영유아권리존중보육 간 영향 관계에서 자기주도직무설계의 조절효과 탐색)

  • Lee, Jae-Moo;Cho, Kyung-Seu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.542-552
    • /
    • 2022
  • The importance of the child-care teacher's job has recently been greatly emphasized due to changes in the transitional social environment, but the performance conditions are poor, requiring management of various job factors. For the purpose of providing information for practical application and institutional support related to child-care teachers, this study selected Flourish, Care that Respects the Rights of Child, and Job Crafting to verify the functional impact relationship and effectiveness. Since there are no domestic studies on child-care teachers using these variables, hierarchical regression analysis was performed on 223 child-care teachers to obtain initial information. As a result of the analysis, only the average difference between groups was found in terms of Flourish according to age and Negative Job Demand Reduction according to working hours. And it was found that the Enhancement of Social Job Resources had a moderating effect. Therefore, it is necessary to prepare a new job management strategy based on the information provided by this study and to develop a highly effective reinforcement program for each factor.

Nonlinear finite element modeling of the self-centering steel moment connection with cushion flexural damper

  • Ali Nazeri;Reza Vahdani;Mohammad Ali Kafi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.151-164
    • /
    • 2023
  • The latest earthquake's costly repairs and economic disruption were brought on by excessive residual drift. Self-centering systems are one of the most efficient ways in the current generation of seismic resistance system to get rid of and reduce residual drift. The mechanics and behavior of the self-centering system in response to seismic forces were impacted by a number of important factors. The amount of post-tensioning (PT) force, which is often employed for the standing posture after an earthquake, is the first important component. The energy dissipater element is another one that has a significant impact on how the self-centering system behaves. Using the damper as a replaceable and affordable tool and fuse in self-centering frames has been recommended to boost energy absorption and dampening of structural systems during earthquakes. In this research, the self-centering steel moment frame connections are equipped with cushion flexural dampers (CFDs) as an energy dissipator system to increase energy absorption, post-yielding stiffness, and ease replacement after an earthquake. Also, it has been carefully considered how to reduce permanent deformations in the self-centering steel moment frames exposed to seismic loads while maintaining adequate stiffness, strength, and ductility. After confirming the FE model's findings with an earlier experimental PT connection, the behavior of the self-centering connection using CFD has been surveyed in this study. The FE modeling takes into account strands preloading as well as geometric and material nonlinearities. In addition to contact and sliding phenomena, gap opening and closing actions are included in the models. According to the findings, self-centering moment-resisting frames (SF-MRF) combined with CFD enhance post-yielding stiffness and energy absorption with the least amount of permeant deformation in a certain CFD thickness. The obtained findings demonstrate that the effective energy dissipation ratio (β), is increased to 0.25% while also lowering the residual drift to less than 0.5%. Also, this enhancement in the self-centering connection with CFD's seismic performance was attained with a respectable moment capacity to beam plastic moment capacity ratio.

Exploring Direction of Lifelong Education in Age of Science and Technology (과학 기술 시대 평생교육 방향 탐색)

  • Yoon Ok Han
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.65-73
    • /
    • 2023
  • With the introduction of lifelong education as a component of national educational policies, public support for it has been expanding more than ever before. The purpose of this study is to explore the direction of lifelong education in the era of science and technology. While various factors need to be considered in determining the orientation of lifelong education in the science and technology era, this study primarily focuses on presenting the directions that are aligned with this era. Firstly, lifelong education is necessary as vocational education. Secondly, lifelong education is needed for digital literacy enhancement. Thirdly, lifelong education is crucial from an ecological transition perspective. It is hoped that these three perspectives will be considered significant in shaping the direction of lifelong education in the era of science and technology, and subsequent discussions will delve into how lifelong education can contribute concretely to these aspects.

The Effect of γ-Aminobutyric Acid Intake on UVB- Induced Skin Damage in Hairless Mice

  • Hairu Zhao;Bomi Park;Min-Jung Kim;Seok-Hyun Hwang;Tae-Jong Kim;Seung-Un Kim;Iksun Kwon;Jae Sung Hwang
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.640-647
    • /
    • 2023
  • The skin, the largest organ in the body, undergoes age-related changes influenced by both intrinsic and extrinsic factors. The primary external factor is photoaging which causes hyperpigmentation, uneven skin surface, deep wrinkles, and markedly enlarged capillaries. In the human dermis, it decreases fibroblast function, resulting in a lack of collagen structure and also decreases keratinocyte function, which compromises the strength of the protective barrier. In this study, we found that treatment with γ-aminobutyric acid (GABA) had no toxicity to skin fibroblasts and GABA enhanced their migration ability, which can accelerate skin wound healing. UVB radiation was found to significantly induce the production of matrix metalloproteinase 1 (MMP-1), but treatment with GABA resulted in the inhibition of MMP-1 production. We also investigated the enhancement of filaggrin and aquaporin 3 in keratinocytes after treatment with GABA, showing that GABA can effectively improve skin moisturization. In vivo experiments showed that oral administration of GABA significantly improved skin wrinkles and epidermal thickness. After the intake of GABA, there was a significant decrease observed in the increase of skin thickness measured by calipers and erythema. Additionally, the decrease in skin moisture and elasticity in hairless mice exposed to UVB radiation was also significantly restored. Overall, this study demonstrates the potential of GABA as functional food material for improving skin aging and moisturizing.

Survey on the Performance Enhancement in Serverless Computing: Current and Future Directions (성능 향상을 위한 서버리스 컴퓨팅 동향과 발전 방향)

  • Eunyoung Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.60-75
    • /
    • 2024
  • The demand of users, who want to focus on the core functionality of their applications without having to manage complex virtual environments in the cloud environment, has created a new computing model called serverless computing. Within the serverless paradigm, resource provisioning and server administration tasks are delegated to cloud services, facilitating application development exclusively focused on program logic. Serverless computing has upgraded the utilization of cloud computing by reducing the burden on cloud service users, and it is expected to become the basic model of cloud computing in the future. A serverless platform is responsible for managing the cloud virtual environment on behalf of users, and it is also responsible for executing serverless functions that compose applications in the cloud environment. Considering the characteristics of serverless computing in which users are billed in proportion to the resources used, the efficiency of the serverless platform is a very important factor for both users and service providers. This paper aims to identify various factors that affect the performance of serverless computing and analyze the latest research trends related to it. Drawing upon the analysis, the future directions for serverless computing that address key challenges and opportunities in serverless computing are proposed.

Effect of Astragalus membranaceus-postbiotics Polysaccharide Changed by Lactic Acid Bacteria on Macrophage (유산균에 의해 변화된 황기-포스트바이오틱스 다당류가 대식세포에 미치는 영향)

  • Yeon Suk Kim;Hyun Young Shin;Won Bi Jeong;Eun Ji Ha;Ja Pyeong Koo;Ji-Young Shin;Kwang-Won Yu
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.1
    • /
    • pp.17-29
    • /
    • 2024
  • To increase industrial applicability of Astragalus membranaceus (AM) as immunostimulating materials, hot-water extract (AME) was prepared from AM and fermented with Kimchi-lactic acid bacteria (Lactobacillus sakei & Leuconostoc mesenteroides) to prepare fermented AM-postbiotics (FAME). Although FAME prepared from AM-postbiotics did not show a significant enhancement in macrophage stimulating activity compared to non-fermented AME, crude polysaccharide (FAME-CP) fractionated by EtOH precipitation from FAME showed significantly higher macrophage stimulating activity than AME-CP. Compared to AME-CP, FAME-CP showed dramatic changes in component sugar and molecular weight distribution. FAME-CP was a polysaccharide with a major molecular weight distribution of 113.4 kDa containing Man (44.2%), Glc (19.3%), Gal (10.2%), GalA (10.2%), and Ara (7.4%) as sugar components. FAME-CP with enhanced macrophage stimulatory activity not only increased expression levels of mRNA genes encoding macrophage-activated factors (iNOS, TNF-α, MCP-1, IL-6, and COX-2), but also led the nuclear translocation of activated p65 and c-Jun. In conclusion, crude polysaccharide from AM-postbiotics fermented with lactic acid bacteria could increase industrial applicability as a functional material with enhanced immunostimulating activity than AME-CP.

The influencing factors for the strength enhancement of composite materials made up of fine high-calcium fly ash

  • Olga M. Sharonova;Leonide A. Solovyov;Alexander G., Anshits
    • Advances in concrete construction
    • /
    • v.16 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • The aim of the study was to establish the influence of particle size, chemical and phase composition of fine microspherical high-calcium fly ash (HCFA), as well as superplasticizer content on the strength of cementless composite materials based on 100% HCFA and mixtures of HCFA with Portland cement (PC). For the initial HCFA fractions, the particle size distribution, chemical and quantitative phase composition were determined. The compressive strength of cured composite materials obtained at W/B 0.4 and 0.25 was determined at a curing time of 3-300 days. For cementless materials, it was found that a change in the particle size d90 from 30 ㎛ (fraction 3) to 10 ㎛ (fraction 4) leads to an increase in compressive strength by more than 2 times. Compressive strength increases by at least another 2.2 times with the addition of Melflux 5581F superplasticizer (0.12%) and at W/B 0.25. The HCFA-PC blends were investigated in the range of 60-90% HCFA and the maximum compressive strength was found at 80% HCFA. On the basis of 80% HCFA-20% PC blend, the samples of ultra-high strength (108 and 150 MPa at 28 and 100 days of hardening) were obtained with the addition of 0.3% Melflux 5581F and 5% silica fume. The quantitative phase composition was determined for composite materials with a curing age of 28 days. It has been established that in a sample with ultra-high strength, a more complete transformation of the initial phases of both HCFA and PC occurs as compared to their transformation separately.

Semi-quantitative Risk Assessment using Bow-tie Method for the Establishment of Safety Management System of Hydrogen Fuel Storage Facility in a Combined Cycle Power Plant (복합화력발전소 내 수소연료 저장설비의 안전관리 체계 구축을 위한 Bow-tie 기법을 활용한 반정량적 위험성 평가)

  • Hee Kyung Park;Si Woo Jung;Yoo Jeong Choi;Min Chul Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.75-86
    • /
    • 2024
  • Hydrogen has been selected as one of the key technologies for reducing CO2 emissions to achieve carbon neutrality by 2050. However, hydrogen safety issues should be fully guaranteed before the commercial and widespread utilization of hydrogen. Here, a bow-tie risk assessment is conducted for the hydrogen fuel supply system in a gas turbine power plant, which can be a mass consumption application of hydrogen. The bow-tie program is utilized for a qualitative risk assessment, allowing the analysis of the causes and consequences according to the stages of accidents. This study proposed an advanced bow-tie method, which includes the barrier criticality matrix and visualized maps of quantitative risk reduction. It is based on evaluating the importance of numerous barriers for the extent of their impact. In addition, it emphasizes the prioritization and concentrated management of high-importance barriers. The radar chart of a bow tie allows the visual comparison of risk levels before/after the application of barriers (safety measures). The risk reduction methods are semi-quantitatively analyzed utilizing the criticality matrix and radar chart, and risk factors from multiple aspects are derived. For establishing a secure hydrogen fuel storage system, the improvements suggested by the bow-tie risk assessment results, such as 'Ergonomic equipment design to prevent human error' and 'Emergency shutdown system,' will enhance the safety level. It attempts to contribute to the development and enhancement of an efficient safety management system by suggesting a method of calculating the importance of barriers based on the bow-tie risk assessment.