• 제목/요약/키워드: engineering seismic data

검색결과 860건 처리시간 0.027초

시추공 탄성파탐사 및 이의 토목공학적 응용 (Borehole Seismics: Review and Its Application to Civil Engineering)

  • 장현삼;임해룡;홍재호
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 1999년도 제2회 학술발표회
    • /
    • pp.176-201
    • /
    • 1999
  • 지반조사를 위하여 흔히 시행하는 시추공 탄성파탐사, 즉 하향 탄성파탐사(downhole seismic), 수직 탄성파탐사(vertical seismic profiling; VSP), 시추공간 속도측정(crosshole seismic), 탄성파 토모그래피(seismic tomography)에 대하여 원리, 현장측정, 자료처리 등을 간략히 설명하고, 현장자료의 예를 제시하였으며 토목공학적 응용에 대해 검토하였다.

  • PDF

지진격리 구조물의 지진모니터링 시스템 개발 (The Development of Seismic Monitoring for a Base-Isolated Building System)

  • 김성훈;조대승;박해동;김두훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.247-251
    • /
    • 2001
  • Nowadays, base isolation systems such as lead-rubber bearing, elastomer bearing and sliding bearing have been installed to the various structures to prevent the disaster from seismic. The performance of base isolation system have been well proved by model-scale experiments and numerical analysis. However. the seismic response data measured at real large base-isolated structures is still insufficient. This paper presents a seismic monitoring system, acquiring real-time acceleration signals up to 32 channels, displaying time history and spectrum of the signals, storing the acquired data at a PC hard disk, and replaying the saved data. Moreover, the system can be operated without any limitation for monitoring period by automatic management of stored data file. The developed system has been installed at a real base-isolated building using lead-rubber bearings and we expect its seismic response data with ground motion signal can be well licquired in case of earthquake occurrence.

  • PDF

지하 구조 영상화를 위한 3차원 탄성파 자료처리시스템 개발 (3-D seismic data processing system for underground investigation)

  • 신동훈;지준;이두성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.585-592
    • /
    • 2000
  • Primary purpose of the system developed in this study is 3-D seismic data processing system for subsurface structure imaging and this system is developed in PC based on Linux for lower-cost computer. Basic data processing modules are originated from SU (Seismic Unix) which is widely used in 2-D seismic data processing and auxilious modules are developed for 3-D data processing. The system which is constructed by using these data processing modules is designed to GUI (Graphic User Interface) in order that one can easily control and for this purpose, GTK (Gimp Tool KiT) conventionally adapted in producing Linux application.

  • PDF

불완전한 자료 및 완전한 자료 목록을 이용한 한반도 지진구들의 지진활동 매개변수 평가 (Estimation of seismicity parameters of the seismic zones of the Korean Peninsula using incomplete and complete data files)

  • 이기화
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.23-30
    • /
    • 1998
  • An estimation of seismic risk parameters by seismic zones of the Korea Peninsula in order to calculate the seismic hazard values using these was erformed. Seven seismic source zones were selected in consideration of seismicity and geology of Korean Peninsula. The seismicity parameters that should be estimated are maximum intensity, activity rate and b value in the Gutenberg - Richter relation. For computation of these parameters, least square method or maximum likelihood method is applied to the earthquake data in two ways; the one for the data without maximum intensity and the other with maximum intensity. Earthquake data since Choseon Dynasty is regarded as complete and estimation of parameters was made for these data using above two ways. And recently, a new method is published that estimate the seismicity parameters using mixed data containing large historical events and recent complete observations. Therefore, this method is applied to the whole earthquake data of the Korean Peninsula. It turns out that the b value computed considering maximum intensity is slightly lower than that computed considering without maximum intensity, and it becomes still lower when the incomplete data prior to Choseon Dynasty is used. In the case of the activity rates, the values obtained without maximum intensity and that with maximum intensity are similar, though they are lower when the incomplete data is used. The values of maximum intensities are usually lower when considering incomplete data. In the seismic source zone including the Yangsan Fault zone, however, the values are higher when considering the incomplete data.

  • PDF

천해저 조사를 위한 탄성파 반사법 및 굴절법 통합연구 (A Study on the Integrated Seismic Reflection and Refraction for Shallow Marine Site Survey KSEG.KGS Joint Symposium)

  • 김찬수;이상철;신성렬;김현도;조철현
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.349-352
    • /
    • 2007
  • Estimating the physical properties of the survey area and mapping the geotechnical basement play an important role in ocean engineering and construction field. In this study, we performed marine seismic reflection and refraction survey as an engineering application at shallow marine. We made use of the dual boomer - single channel streamer as a source-receiver in reflection seismic survey and air-gun source - the manufactured OBC(Ocean Bottom Cable)-type streamer in refraction survey. In the seismic reflection data, we could easily find the geological layers and basement. Moreover, seismic refraction data could present sediment thickness and velocity distribution.

  • PDF

El-centro 지진파형을 이용한 CAFB의 최적화 및 교량 지진응답실험에 관한 연구 (A Study on the Optimization and Bridge Seismic Response Test of CAFB Using El-centro Seismic Waveforms)

  • 허광희;이진옥;서상구;박진용;전준용
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.67-76
    • /
    • 2020
  • This study aims to optimize the cochlea-inspired artificial filter bank (CAFB) using El-Centro seismic waveforms and test its performance through a shaking table test on a two-span bridge model. In the process of optimizing the CAFB, El-Centro seismic waveforms were used for the purpose of evaluating how they would affect the optimizing process. Next, the optimized CAFB was embedded in the developed wireless-based intelligent data acquisition (IDAQ) system to enable response measurement in real-time. For its performance evaluation to obtain a seismic response in real-time using the optimized CAFB, a two-span bridge (model structures) was installed in a large shaking table, and a seismic response experiment was carried out on it with El-Centro seismic waveforms. The CAFB optimized in this experiment was able to obtain the seismic response in real-time by compressing it using the embedded wireless-based IDAQ system while the obtained compressed signals were compared with the original signal (un-compressed signal). The results of the experiment showed that the compressed signals were superior to the raw signal in response performance, as well as in data compression effect. They also proved that the CAFB was able to compress response signals effectively in real-time even under seismic conditions. Therefore, this paper established that the CAFB optimized by being embedded in the wireless-based IDAQ system was an economical and efficient data compression sensing technology for measuring and monitoring the seismic response in real-time from structures based on the wireless sensor networks (WSNs).

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.

Machine learning application to seismic site classification prediction model using Horizontal-to-Vertical Spectral Ratio (HVSR) of strong-ground motions

  • Francis G. Phi;Bumsu Cho;Jungeun Kim;Hyungik Cho;Yun Wook Choo;Dookie Kim;Inhi Kim
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.539-554
    • /
    • 2024
  • This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.

국가지진관측망 기반 지진동 데이터베이스 개발 연구 (A Study on Development of an Earthquake Ground-motion Database Based on the Korean National Seismic Network)

  • 최세운;이준기;이상현;강태섭
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.277-283
    • /
    • 2020
  • In order to improve the ground-motion prediction equation, which is an important factor in seismic hazard assessment, it is essential to obtain good quality seismic data for a region. The Korean Peninsula has an environment in which it is difficult to obtain strong ground motion data. However, because digital seismic observation networks have become denser since the mid-2000s and moderate earthquake events such as the Odaesan earthquake (Jan. 20, 2007, ML 4.8), the 9.12 Gyeongju earthquake (Sep. 12, 2016, ML 5.8), and the Pohang earthquake (Nov. 15, 2017, ML 5.4) have occurred, some good empirical data on ground motion could have been accumulated. In this study, we tried to build a ground motion database that can be used for the development of the ground motion attenuation equation by collecting seismic data accumulated since the 2000s. The database was constructed in the form of a flat file with RotD50 peak ground acceleration, 5% damped pseudo-spectral acceleration, and meta information related to hypocenter, path, site, and data processing. The seismic data used were the velocity and accelerogram data for events over ML 3.0 observed between 2003 and 2019 by the Korean National Seismic Network administered by the Korea Meteorological Administration. The final flat file contains 10,795 ground motion data items for 141 events. Although this study focuses mainly on organizing earthquake ground-motion waveforms and their data processing, it is thought that the study will contribute to reducing uncertainty in evaluating seismic hazard in the Korean Peninsula if detailed information about epicenters and stations is supplemented in the future.

다중채널 고분해능 해양탄성파탐사 시스템 개발 및 현장적용 (Development of High Resolution Multichannel Seismic Data Acquisition System and its Field Application)

  • 김영준;여은민;김찬수;신성렬
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2005년도 공동학술대회 논문집
    • /
    • pp.293-298
    • /
    • 2005
  • 본 연구에서는 트랜스듀서를 이용하여 탐사 장소, 수심 및 목적에 따라 사용 할 수 있고 운용 및 이동이 편리한 천해저용 탄성파 음원을 제작하였으며, 다중채널 해양탄성파 탐사를 하기 위해 4채널 스트리머 2개를 제작하였다. 또한 분해능을 향상하기 위하여 24bits A/D 변환기를 사용하였고, 채널이 총 8개인 다중채널 기록장치를 제작하여 자료취득 과정에 있어서 효율성을 높이면서 자료의 품질을 향상시켰다. 개발된 시스템의 현장 적용성을 검증하기 위하여 기존의 상용화 자료 취득시스템으로 현장탐사를 동시에 수행하였다.

  • PDF