• 제목/요약/키워드: engineering safe design

검색결과 985건 처리시간 0.034초

4절링크의 전달각에 기초한 충격흡수식 안전 메커니즘 (Shock Absorbing Safe Mechanism Based on Transmission Angle of a 4-bar Linkage)

  • 박정준;김병상;송재복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.180-185
    • /
    • 2004
  • Unlike industrial manipulators, the manipulators mounted on the service robots are interacting with humans in various aspects. Therefore, safety has been the important design issue. Many compliant robot arm designs have been introduced for safety. It is known that passive compliance method has faster response and higher reliability than active ones. In this paper, a new safe mechanism based on passive compliance has been proposed. Passive mechanical elements, specifically transmission angle of the 4-bar linkage, springs and shock absorbing modules are incorporated into this safe mechanism. This mechanism works only when the robot arm exerts contact force much more than the human pain tolerance. Validity of the safe mechanism is verified by simulations and experiments. In this research, it is shown that the manipulator using this mechanism provides higher performance and safety than those using other passive compliance mechanisms.

  • PDF

비닐하우스의 적설하중 구조안전성 검토에 관한 연구 (A Study on the Structural Safety Analysis for Vinyl House at Snow Load)

  • 백신원
    • 한국안전학회지
    • /
    • 제34권2호
    • /
    • pp.34-39
    • /
    • 2019
  • Vinyl house consists of main rafter, lateral member, clamps and polyethylene film. Many vinyl houses are used in the countryside to grow vegetables. These vinyl houses have occasionally been collapsed due to heavy snowfall in winter. Many farmers get a lot of economical damages, if vinyl houses are collapsed. So it is most important to built a safe vinyl house that can withstand heavy snowfall. In this study, a structural analysis was performed on three types of vinyl houses(07-single-01, 10-single-04, 12-single-01). In addition, the structural analysis of the three types of vinyl houses provided axial forces, flexural moment, and combined stress. For these three types of vinyl houses, structural safety was reviewed by obtaining the combined stress ratio by the strength design method. This structural review showed that the specifications for the vinyl house proposed in the design are not safe. Especially, the result of increasing the design snow load by 15 percent and 30 percent showed that the vinyl house structure constructed as a standard for vinyl house was a more dangerous structure. Therefore, it is necessary to revise regulations such as increasing the thickness of rafters or widening the gap in order to make vinyl houses structurally safe for heavy snowfall in the future, and to devise diverse methods to make vinyl houses that are structurally safe.

CT형 변후보강재의 최적 설계 (Optimum Design of the CT Type Plate with Varing Thickness)

  • 석창성;최용식
    • 한국안전학회지
    • /
    • 제6권1호
    • /
    • pp.5-13
    • /
    • 1991
  • Fail-safe design of machine elements or structural members is very aim of the whole mankind. Fracture occurs generally from cracks that exist originally or produced from flaws. The most important job we have to do is to make stopping or decreasing the crack growth rate. For fail-safe design variable thickness plates have been used as structural members in practical engineering services. In this paper, optimum design of CT type plate with varlng thickness is studied with the theoritical analysis. The theoritical analysis was based on the stress concentration and nominal stress analysis. From the study, the optimum design curve was determined for use of designing of such structures using the computer analysis program of optimum design.

  • PDF

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Ahmad, Furqan;Lee, Chang-Yeol;Kim, Tae-Ok;Park, Myung-Kyun
    • 한국가스학회지
    • /
    • 제15권5호
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, an analytical model of a cantilever beam having a midpoint load is considered for structural optimization and design. This involves creation of the geometry through a parametric study of all design variables. For this purpose, the optimization of the cantilever beam was elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight by FEM (finite element method) analysis. Such geometry can be obtained by different combinations of width and height, so that the beam may have the same cross-sectional area, yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration, different dynamic analyses were performed simultaneously to identify the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. Next, by introducing damping effects, the tip displacement and bending stress at the fixed end was evaluated under dynamic loads of varying frequency. Investigation of the results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design it must be aided by dynamic analysis as well.

경항공모함 이·착함 성능평가 및 안전임무 수행범주 일관 해석 연구 (A Study on Short-Take-Off and Vertical Landing (STOVL) Performance Evaluation of a Light Aircraft Carrier and a Consistent Analysis of Safe Operating Envelope (SOE))

  • 홍사영;박동민;정재환;서민국;조석규
    • 대한조선학회논문집
    • /
    • 제61권2호
    • /
    • pp.125-134
    • /
    • 2024
  • The Safe Operating Envelope (SOE) combined with Short-Take-Off and Vertical Landing (STOVL) performance is an essential consideration of a light aircraft carrier for design of hull shape with excellent seakeeping performance in terms of naval air operations as well as traditional naval ship missions such as Transit and Patrol (TAP), and Replenishment at Sea (RAS) and so on. A variety of procedures are systematically combined to determine SOE considering rather complicated missions associated with operation of aircraft onboard. The evaluation of take-off and landing safety missions onboard should consider wind effect on deck and severer seakeeping indices and standards compared with conventional naval ships. In order to support take-off and landing missions, various support activities of the crews are required. So, additional evaluation is needed for indicators such as MSI(Motion sickness Index) and MII(Motion Induced Interruptions), which are quantitative indicators of work ability that appear as a result of motion response. In this study, a standard procedure is developed including the seaworthiness performance indicators, standards, and evaluation procedures that should be considered during design of STOVL aircraft carrier. Analysis results are discussed in terns of air-wake on deck as well as seakeeping indices associated with design parameter changes in view of conceptual design of a light aircraft carrier.

Workplace Universal Design for the Older Worker: Current Issues and Future Directions

  • Jeong, Byung Yong;Shin, Dong Seok
    • 대한인간공학회지
    • /
    • 제33권5호
    • /
    • pp.365-376
    • /
    • 2014
  • Objective:The objective of this study is to apply the principals and policies of universal design to offer a safe and efficient workplace for older workers. Background: The concept of universal design has rapidly developed under the paradigm that tasks should be easy and comfortable for all people with diverse features. The concept is also fitting when designing a workplace. Method: Legislations, policies and precedents of workplaces with older workers have been studied and analyzed. The compilation has been used to project the present and future of employing universal design at workplace devisal. Results: Every country has its own legislations/policies regarding universal design, flexible working, and age-friendly workplaces to increase hire of older workers. The basic concept of UD and its application is explained. This study provides guidelines for employing universal design at workplaces and preventing accidents for older workers. Conclusion: Following the principals of universal design is expected to furnish a comfortable and safe workplace and lengthen the period of workers participating in the labor force in an ageing society. Application: This study offers the principles for universal design, serving as fundamental research for its application to the workplace.

곡선반경과 노면상태에 따른 곡선구간 안전주행 행태분석 (A Study on the Analysis of Safe Driving Behavior on Curve Section by Curve Radius and Road Surface Condition)

  • 김근혁;임준범;이수범;김주희;김선미
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.211-218
    • /
    • 2012
  • Two experiment are planed to identify driver's safe driving behaviour by curve radius, road surface condition in curve section. At four-lane and two-lane road, conducted experiments are check on driver's feeling of safety that 30 subjects do not feel discomfort. And using the data from these experiments, this study compare physical speed (not slipping, fall our of the road) with safety driving speed(drivers felt a comfortable and safe speed) each curve radius and fiver road surface condition(drying, wet, rain, snow and ice). As a result, safe driving behaviour factors that are derived to curve radius of 100m units, five road surface conditions enable to represent quantitative analysis of driver's discomfort. This study will develop road design method and evaluation reflected ergonomic aspects.

멤브레인형 LNGC의 열계산에 기초한 안전운항기술에 관한 연구 (A Study on the Safe Maneuvering Technology Based on the Thermal Calculation of Membrane Type LNG Carrier)

  • 김창복;김경근;오철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1192-1200
    • /
    • 2008
  • This paper is concerned with the thermal design of the $138,000m^3$ class membrane type LNGC. To predict the temperature distribution, BOG and BOR, 3-dimensional numerical calculation was carried-out for the quarter of No.3 LNG tank. These sequence analyses were performed under the standard conditions of IMO ship design condition, USCG ship design condition and the Korean flag LNGC's route condition according to the 6-voyage modes. As the results, temperature behavior, heat flux, total penetrating heat, BOG and BOR were obtained, and those were compared with the maneuvering results considering the real temperature variation of air and sea water temperature at noon time. For securing the safety of LNGC during the ballast voyage, optimum control patterns of pressure and temperature in LNG tank is suggested in this paper.

원전 디지털 제어계통을 위한 고장허용설계방법론에 관한 연구 (A Study on Fault-Tolerance Design Methods for Nuclear Digital Control Systems)

  • 고원석;최중인
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권1호
    • /
    • pp.1-9
    • /
    • 2000
  • In this paper, a design method of fault-tolerance is presented for the nuclear digital control systems composed of software and hardware. As a quantitative design method measure of fault-tolerance, we used Reliability, Availability and Safety. To implement the proposed fault-tolerance, a prototype system has been devised for the digital control systems and a quantitative method of 'Markovian Model' is applied. The results provide the appropriate degree of redundancy and diversity, and fail-safe.

  • PDF

안전단 길이 및 동종금속용접부 두께 변화에 따른 안전주입노즐 이종금속용접부의 응력분포 (Stress Distributions at the Dissimilar Metal Weld of Safety Injection Nozzles According to Safe-end Length and SMW Thickness)

  • 김태진;정우철;허남수
    • 대한기계학회논문집A
    • /
    • 제39권10호
    • /
    • pp.979-984
    • /
    • 2015
  • 본 논문에서는 국내 가동 중인 원자력발전소의 안전주입노즐을 대상으로 안전단의 길이와 동종금속용접부의 두께가 이종금속용접부의 응력분포에 미치는 영향을 평가하였다. 이를 위해 4가지의 서로 다른 안전단 길이와 4가지의 서로 다른 동종금속용접부 두께를 고려한 상세 2차원 유한요소 열해석 및 응력해석을 수행하였다. 유한요소해석 결과 동종금속용접부의 두께는 안전단의 길이가 짧은 경우 축방향 응력에 어느 정도 영향을 미쳤으나 원주방향 응력에는 거의 영향을 미치지 않았다. 안전단의 길이는 길이가 증가함에 따라 내면에서의 축방향 및 원주방향 응력값이 증가하는 것으로 나타났으나 특정 안전단 길이를 기준으로 응력분포가 구분되는 경향을 나타냈다.