• 제목/요약/키워드: engineering bedrock

검색결과 236건 처리시간 0.024초

Soil vibration induced by railway traffic around a pile under the inclined bedrock condition

  • Ding, Xuanming;Qu, Liming;Yang, Jinchuan;Wang, Chenglong
    • Geomechanics and Engineering
    • /
    • 제24권2호
    • /
    • pp.143-156
    • /
    • 2021
  • Rail transit lines usually pass through many complicated topographies in mountain areas. The influence of inclined bedrock on the train-induced soil vibration response was investigated. Model tests were conducted to comparatively analyze the vibration attenuation under inclined bedrock and horizontal bedrock conditions. A three-dimension numerical model was built to make parameter analysis. The results show that under the horizontal bedrock condition, the peak velocity in different directions was almost the same, while it obviously changed under the inclined bedrock condition. Further, the peak velocity under inclined bedrock condition had a larger value. The peak velocity first increased and then decreased with depth, and the trend of the curve of vibration attenuation with depth presented as a quadratic parabola. The terrain conditions had a significant influence on the vibration responses, and the inclined soil surface mainly affected the shallow soil. The influence of the dip angle of bedrock on the peak velocity and vibration attenuation was related to the directions of the ground surface. As the soil thickness increased, the peak velocity decreased, and as it reached 173% of the embedded pile length, the influence of the inclined bedrock could be neglected.

An approach for deformation modulus mechanism of super-high arch dams

  • Wu, Bangbin;Niu, Jingtai;Su, Huaizhi;Yang, Meng;Wu, Zhongru;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.557-566
    • /
    • 2019
  • The reservoir basin bedrock produced significant impact on the long-term service safety of super-high arch dams. It was important for accurately identifying geomechanical parameters and its evolution process of reservoir basin bedrock. The deformation modulus mechanism research methods of reservoir basin bedrock deformation modulus for super-high arch dams was carried out by finite element numerical calculation of the reservoir basin bedrock deformation and in-situ monitoring data analysis. The deformation modulus inversion principle of reservoir basin bedrock in a wide range was studied. The convergence criteria for determining the calculation range of reservoir basin of super-high arch dams was put forward. The implementation method was proposed for different layers and zones of reservoir basin bedrock. A practical engineering of a super-high arch dam was taken as the example.

내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (II) 제안 (Site Classification and Design Response Spectra for Seismic Code Provisions - (II) Proposal)

  • 조형익;;김동수
    • 한국지진공학회논문집
    • /
    • 제20권4호
    • /
    • pp.245-256
    • /
    • 2016
  • In the companion paper (I - Database and Site Response Analyses), site-specific response analyses were performed at more than 300 domestic sites. In this study, a new site classification system and design response spectra are proposed using results of the site-specific response analyses. Depth to bedrock (H) and average shear wave velocity of soil above the bedrock ($V_{S,Soil}$) were adopted as parameters to classify the sites into sub-categories because these two factors mostly affect site amplification, especially for shallow bedrock region. The 20 m of depth to bedrock was selected as the initial parameter for site classification based on the trend of site coefficients obtained from the site-specific response analyses. The sites having less than 20 m of depth to bedrock (H1 sites) are sub-divided into two site classes using 260 m/s of $V_{S,Soil}$ while the sites having greater than 20 m of depth to bedrock (H2 sites) are sub-divided into two site classes at $V_{S,Soil}$ equal to 180 m/s. The integration interval of 0.4 ~ 1.5 sec period range was adopted to calculate the long-period site coefficients ($F_v$) for reflecting the amplification characteristics of Korean geological condition. In addition, the frequency distribution of depth to bedrock reported for Korean sites was also considered in calculating the site coefficients for H2 sites to incorporate sites having greater than 30 m of depth to bedrock. The relationships between the site coefficients and rock shaking intensity were proposed and then subsequently compared with the site coefficients of similar site classes suggested in other codes.

국내 암반지층의 전단파속도에 근거한 지진공학적 기반암 결정 (Earthquake Engineering Bedrock Based on the Shear Wave Velocities of Rock Strata in Korea)

  • 선창국
    • 지질공학
    • /
    • 제24권2호
    • /
    • pp.273-281
    • /
    • 2014
  • 대부분의 내진설계 기준에서 설계지진지반운동은 기반암에서의 기준 스펙트럼과 지반동적 조건 정량화를 위한 부지증폭계수에 의해 정의된다. 특히, 지진공학적 기반암은 지진파가 증폭 없이 감쇠전파되는 기초적 지반구성층이다. 지진공학 관점에서 기반암을 파악하기 위하여, 원위치 탄성파시험으로 획득한 전단파속도($V_S$) 자료를 시추조사 시 구분되는 암반층에 대해 살펴보았다. 국내 연암에서 대부분의 $V_S$ 자료는 강지진 관측소 설치 시 고려되는 공학적 기반암의 최저 $V_S$ 값인 750 m/s에 비해 크게 나타났으나, 풍화암에서는 전체의 60 % 정도가 작게 나타났다. 따라서 국내 풍화암 하부의 연암 및 그 이상 경도의 암반층을 지진공학적 기반암으로 고려해야 한다.

Ground response analysis of a standalone soil column model for IDA of piled foundation bridges

  • Hazem W. Tawadros;Mousa M. Farag;Sameh S.F. Mehanny
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.289-301
    • /
    • 2023
  • Developing a competent soil-bridge interaction model for the seismic analysis of piled foundation bridges is of utmost importance for investigating the seismic response and assessing fragility of these lifeline structures. To this end, ground motion histories are deemed necessary at various depths along the piles supporting the bridge. This may be effectively accomplished through time history analysis of a free-field standalone soil column extending from bedrock level to ground surface subjected to an input bedrock motion at its base. A one-dimensional site/ground response analysis (vide one-directional shear wave propagation through the soil column) is hence conducted in the present research accounting for the nonlinear hysteretic behavior of the soil stratum encompassing the bridge piled foundation. Two homogeneous soil profiles atop of bedrock have been considered for comparison purposes, namely, loose and dense sand. Analysis of the standalone soil column has been performed under a set of ten selected actual bedrock ground motions adopting a nonlinear time domain approach in an incremental dynamic analysis framework. Amplified retrieved PGA and maximum soil shear strains have been generally observed at various depths of the soil column when moving away from bedrock towards ground surface especially at large hazards associated with high (input) PGA values assigned at bedrock. This has been accompanied, however, by some attenuation of the amplified PGA values at shallower depths and at ground surface especially for the loose sand soil and particularly for cases with higher seismic hazards associated with large scaling factors of bedrock records.

기반암의 전단파속도를 고려한 지진파의 통과시차가 건물의 지진거동에 미치는 영향 (Wave Passage Effect on the Seismic Response of a Building considering Bedrock Shear Wave Velocity)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제18권2호
    • /
    • pp.89-94
    • /
    • 2014
  • Spatial variations of a seismic wave are mainly wave passage and wave scattering. Wave passage effect is produced by changed characteristics of exciting seismic input motions applied to the bedrock. Modified input motions travel horizontally with time differences determined by apparent shear wave velocity of the bedrock. In this study, wave passage effect on the seismic response of a structure-soil system is investigated by modifying the finite element software of P3DASS (Pseudo 3-Dimensional Dynamic Analysis of a Structure-soil System) to apply inconsistent (time-delayed) seismic input motions along the soft soil-bedrock interface. Study results show that foundation size affected on the seismic response of a structure excited with inconsistent input motions in the lower period range below 0.5 seconds, and seismic responses of a structure were decreased considerably in the lower period range around 0.05 seconds due to the wave passage. Also, shear wave velocity of the bedrock affected on the seismic response of a structure in the lower period range below 0.3 seconds, with significant reduction of the seismic response for smaller shear wave velocity of the bedrock reaching approximately 20% for an apparent shear wave velocity of 1000m/s at a period of 0.05 seconds. Finally, it is concluded that wave passage effect reduces the seismic response of a structure in the lower period range when the bedrock under a soft soil is soft or the bedrock is located very deeply, and wave passage is beneficial for the seismic design of a short period structure like a nuclear container building or a stiff low-rise building.

전도성 충적지반의 지질 및 하부 기반암 조사를 위한 지하레이다(GPR)의 적용 (Application of GPR Technology for Detecting Bedrock under Conductive Overburden and Geological Survey)

  • 윤운상;배성호;김병철;김학수
    • 터널과지하공간
    • /
    • 제5권2호
    • /
    • pp.114-122
    • /
    • 1995
  • The principle and applications of GPR(Ground Penetrating Radear) are familiar to engineering geologists and geophsicists as very attractive technique for continuous high resolution images of the subsurface. However, the main limitation of GPR is obviously related to presence of clayey or silty conductive soils, resulting in complete attenuation of radar signals. This difficulty gives hesitation for the exploration of the deeper targets for example detecting bedrock, particularly in Korean situation that most regions have conductive overburden. In order to prove usefulness of geological survey with GPR in that situation, the technique was tried to investigate depth of bedrock under thick conductive overburden and the other geolocgical informations for the constructionof foundation in the Dongbu apartment site, Kimhae. The reflection patterns on the processed GPR sections are well correlated with the geotechnical units-bedrock, alluvium, landfill unit and their internal layer-boundaries of boring data before GPR survey, except upper contact of bedrock. The isopach maps of the geotechnical units for the 3-D interpretations are made from GPR sections. The maps provided useful geological information that bedrock was distributed as plain and valley with 22~27m depth under alluvium unit (this depth is 5~8 m deeper than drill log) and sedimentary layers subsided and bended along growth fault with NNE strike/15$^{\circ}$SE dip in alluvium unit.

  • PDF

Effects of inclined bedrock on dissimilar pile composite foundation under vertical loading

  • Kaiyu, Jiang;Weiming, Gong;Jiang, Xu;Guoliang, Dai;Xia, Guo
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.477-488
    • /
    • 2022
  • Pile composite foundation (PCF) has been commonly applied in practice. Existing research has focused primarily on semi-infinite media having equal pile lengths with little attention given to the effects of inclined bedrock and dissimilar pile lengths. This investigation considers the effects of inclined bedrock on vertical loaded PCF with dissimilar pile lengths. The pile-soil system is decomposed into fictitious piles and extended soil. The Fredholm integral equation about the axial force along fictitious piles is then established based on the compatibility of axial strain between fictitious piles and extended soil. Then, an iterative procedure is induced to calculate the PCF characteristics with a rigid cap. The results agree well with two field load tests of a single pile and numerical simulation case. The settlement and load transfer behaviors of dissimilar 3-pile PCFs and the effects of inclined bedrock are analyzed, which shows that the embedded depth of the inclined bedrock significantly affects the pile-soil load sharing ratios, non-dimensional vertical stiffness N0/wdEs, and differential settlement for different length-diameter ratios of the pile l/d and pile-soil stiffness ratio k conditions. The differential settlement and pile-soil load sharing ratios are also influenced by the inclined angle of the bedrock for different k and l/d. The developed model helps better understand the PCF characteristics over inclined bedrock under vertical loading.

구조물의 시간이력 지진해석을 위한 암반지진기록의 특성분석 (Characteristic Investigation of the Bedrock Earthquake Records for the Structural Time-History Seismic Analyses)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제12권1호
    • /
    • pp.89-95
    • /
    • 2008
  • 최근까지도 많은 시간이력 지진해석이 연약지반의 증폭영향을 고려하지 않고 연약지반 위 지표면에서 기록된 지진거동으로 수행되었다. 그러나 합리적인 구조물의 지진해석을 위해서는 지반조건을 고려하고 암반지진기록을 이용하는 것이 중요하다. 이 연구에서는 연구를 위해 태평양지진연구센터(PEER)에서 제공하는 공개된 1557개의 지진기록 중에서 26개 암반지진기록을 선정하고 암반지진 기록의 특성을 분석하였다. 연구결과에 의하면, 지반조건을 고려하지 않고 지진규모로부터 지진가속도를 추정하는 것은 합리적이지 못하며, PEER 데이터베이스 암반지진기록으로는 지진가속도, 지진규모, 진앙거리 사이의 일반적인 상관관계를 추정하는 것도 어려운 것으로 평가되었다. 그러나 이 연구에서 선정한 26개 암반지진기록은 구조물-지반체계의 시간이력 지진해석을 위해 암반지진기록으로 사용할 수는 있지만, 이 지진기록을 사용할 때에도 지진가속도, 지진규모, 진앙거리 및 지반조건이 유사한 지진기록을 사용하는 것이 필요하다는 것을 확인할 수 있었다.

Amplification based on shear wave velocity for seismic zonation: comparison of empirical relations and site response results for shallow engineering bedrock sites

  • Anbazhagan, P.;Aditya, Parihar;Rashmi, H.N.
    • Geomechanics and Engineering
    • /
    • 제3권3호
    • /
    • pp.189-206
    • /
    • 2011
  • Amplification based on empirical relations is widely used for seismic microzonation of urban centers. Amplifications are used to represent the site effects of a particular soil column. Many empirical correlations are available to estimate the amplification of seismic waves. These correlations are based on the ratio of shear wave velocity of foundation/rock to soil velocity or 30 m equivalent shear wave velocity ($Vs^{30}$) and are developed considering deep soil data. The aim of this work is to examine the applicability of available amplification relations in the literature for shallow engineering bedrock sites by carrying out site response studies. Shear wave velocity of thirteen sites having shallow engineering bedrock have been selected for the study. In these locations, the depth of engineering bedrock (> 760 ${\pm}$ 60 m/s) is matched with the drilled bore hole. Shear wave velocity (SWV) has been measured using Multichannel Analysis of Surface Wave survey. These sites are classified according to the National Earthquake Hazards Reduction Program (NEHRP) classification system. Amplifications for an earthquake are arrived for these sites using empirical relations and measured SWV data. Site response analysis has been carried out in SHAKE using SWV and using synthetic and real earthquake data. Amplification from site response analysis and empirical relations are compared. Study shows that the amplification arrived using empirical relations does not match with the site response amplification. Site response amplification is much more than empirical values for same shear wave velocity.