• Title/Summary/Keyword: engine soot

Search Result 276, Processing Time 0.025 seconds

Soot Concentration Measurement in Diesel Engine Using Laser Sheet Beam (레이저 시트빔을 이용한 디젤엔진의 Soot 농도 계측)

  • Lee, J.S.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.23-29
    • /
    • 2000
  • Recently the laser sheet technique has been developed to improve our limited understanding of the in-cylinder diesel combustion. The technique is capable of high temporal and spatial resolution, so that it is proved to be an adequate combustion diagnostics to find out exhaust emission formation. The optical signals of LIS(Laser Induced Scattering) and LII(Laser Induced Incandescence) images show informations for soot concentration within the optically accessible diesel engine. The LIS and LII signal images of soot concentration provide new insight into where and when soot occurs in a diesel engine.

  • PDF

The Characteristics of Exhaust Gas in Diesel Engine by High Frequency Plasma-EGR System (고주파 플라즈마 시스템에 의안 디젤기관의 배기가스 특성)

  • Park, Jae-Yoon;Jung, Jang-Gun;Kim, Jong-Suk;Ha, Hyun-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.109-113
    • /
    • 2005
  • NOx, Soot and other exhausted components already became a dangerous state as principal materials of the air pollution. Therefore, the exhausted regulations are getting strict in the many countries. In this paper, reduction characteristic of NOx Soot and CO from diesel engine are investigated when MF plasma system is put to the diesel engine. NOx is decreased in all measured load and applied voltage to plasma reactor.

Measurement technique for particle and soot of diesel injection by using a visualization method (가시화법을 이용한 디젤 인젝터의 액적과 soot의 측정 기술)

  • Chung, J.W.;Park, H.J.;Lee, K.H.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.22-28
    • /
    • 2001
  • Recently, many researches have been performed to improve the combustion and emission in a D.I.Diesel engine. Especially reduction of the soot formation in the combustion chamber is the essential to acquire the improvement of the emission performance. This emission of the diesel combustion is effected by the characteristics of air-fuel mixing. Therefore, the optical measurement technique such as LII and LIS were established in order to visualize the distribution of the soot and analyze the particle including spray in the combustion chamber. In this study, we developed the algorithm for calculating relative diameter and density of particle and applied this method to measure stimultaneously the distribution of soot and spray in a D.I. diesel engine. From this experiment we found that the soot is existed in the rich region of spray and generated caused by incapable air fuel mixture.

  • PDF

A Study on Effect of Intake Mixture Temperature upon Fuel Economy and Exhaust Emissions in Diesel Engines with a Scrubber EGR System

  • Bae, Myung--Whan;Ryu, Chang-Seong;Yoshihiro Mochimaru;Jeon, Hyo-Joong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.315-331
    • /
    • 2004
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle. four-cylinder. swirl chamber type. water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas Recirculation (EGR) control system for reducing $\textrm{NO}_{x}$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $\textrm{NO}_{x}$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection. however. would be included within those of scrubber EGR system. In order to survey the effects of cooled EGR and moisture on $\textrm{NO}_{x}$ and soot emissions. the intake mixtures of fresh air and recirculated exhaust gas are heated up using a heater with five heating coils equipped in a steel drum. It is found that intake and exhaust oxygen concentrations are decreased, especially at higher loads. as EGR rate and intake mixture temperature are increased at the same conditions of engine speed and load. and that $\textrm{NO}_{x}$ emissions are decreased. while soot emissions are increased owing to the decrease in intake and exhaust oxygen concentrations and the increase in equivalence ratio. Thus ond can conclude that $\textrm{NO}_{x}$ and soot emissions are considerably influenced by the cooled EGR.

EFFECTS OF SPLIT INJECTION AND OXYGEN-ENRICHED AIR ON SOOT EMISSIONS IN A DIESEL ENGINE

  • Nguyen, Khai;Sung, Nak-Won;Lee, Sang-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2965-2970
    • /
    • 2008
  • Effects of split injection and oxygen-enriched air on soot emissions in a DI diesel engine were studied by the KIVA-3V code. When split injection is applied, the second injection of fuel into a cylinder results in two separate stoichiometric zones which increases soot oxidation. As a result, soot emissions are decreased with split injection. When oxygen-enriched air is applied together with split injection, higher concentration of oxygen helps secondary combustion which results in a higher temperature in the cylinder. The increased temperature promotes growth reaction of acetylene with soot but doesn't improve the acetylene formation during the second injection of fuel. As more acetylene is consumed in the growth reaction of acetylene, the net acetylene mass in the cylinder is decreased, which leads to a decrease of soot formation. With an increase of soot oxidation caused by split injection, the soot emissions are decreased significantly. However, to avoid excessive NOx emissions with increased oxygen concentration, the level of oxygen concentration should be lower than 22% in volume.

  • PDF

A Study on the Effects of Recirculated Exhaust Gas on Soot Emissions in Diesel Engines (디젤기관 매연 배출물에 미치는 재순환 배기의 영향에 관한 연구)

  • Bae, M.W.;Lim, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.142-154
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristic of soot emissions have been investigated by using an eight-cylinder, four-stroke, direct injection and water-cooled diesel engine operating at several loads and speeds. The experiments in this study are carried out at the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate are used to analyze and discuss the influences of EGR rate on soot emissions. Results of this study indicate that soot emissions increase owing to the drop of intake oxygen concentration and the rise of equivalence ratio as the EGR rate increases at a given engine load and speed, especially the high load.

  • PDF

A Study on the Combustion Characteristic and Soot Distribution of a Common Rail Type D.I.Diesel Visualized Engine with Pilot Injection (파일럿 분사시의 커먼레일식 직분식 가시화 디젤엔진의 연소 및 Soot분포 특성에 관한 연구)

  • 이재용;한용택;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.37-43
    • /
    • 2003
  • The objective of this work is to investigate the effect of swirl, injection pressure and pilot injection on D.I. diesel combustion by using a transparent engine system. The test engine is equipped with common rail injection system to obtain high pressure and to control injection timing and duration. In this study, the combustion analysis and steady flow test were conducted to estimate the heat release rate from in-cylinder pressure. Soot distribution in diffusion flame according to swirl ratio, injection pressure and pilot injection was investigated by using LII technique. As the results, high injection pressure was found to shorten ignition delay as well as enhance peak pressure and heat release rate was greatly affected by injection timing and pilot injection. In addition, the results showed that the period of soot formation corresponded to the diffusion flame.

A study on the characteristics of soots formation in spray flame for DI diesel engine (직접분사식 디젤기관의 화염 속에서 생성되는 그을음의 특성에 관한 연구)

  • 라진홍;안수길
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.128-140
    • /
    • 1996
  • To analyze a formation process of the soots in spray flame in the combustion chamber, an optically accessible DI Diesel engine was used for visualization. The images of the flames and soots were visualiaed with high speed camera by Schlieren method and Light extinction method. The spray flame and soot images on the films were analyzed at the various engine operating conditions. Soot distributed widely in spray flame and its concentration was about $100g/m^3$ at the position close by nozzle tip of spray flame region, however it decreased below $20g/m^3$ at the corner of combustion chamber due to soot oxidation.

  • PDF

A Flame Study of Soot Deposition and Reentrainment in Application to Control of Diesel Soot Emission (디젤엔진 관련 Soot 부착 및 재유입에 관한 화염에서의 연구)

  • Kim, Seong-Geun;Park, Jong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2626-2636
    • /
    • 1996
  • A study of soot deposition and reentrainment was carried out both theoretically and experimentally to understand behavior of soot formed by incomplete combustion in a diesel engine. Theoretically, soot deposition on engine cylinder wall and/or piston head was studied with a stagnation point flow approximation. Soot reentrainment occurred upon exhaust gas blowdown was also studied by assuming a long-normal shear velocity distribution. Experimentally, a LPG$O_2/N_2$ flame impinging on a disk, produced by a concentric tubular burner, was chosen as deposition configuration and a shear flow unit with compressed air was installed for the study of reentrainment. For selected flame configuration, soot deposition measurements were conducted and showed that the dominant deposition mechanism was thermophoresis. Distributions of gas temperature and soot number density were estimated by combining data obtained by a B-type thermocouple with a thermophoretic transport theory. Disk temperature distributions were directly measured using a K-type thermocouple. Soot size and morphology were estimated from a TEM photograph. Ratios of soot deposit to reentrained amount were measured for a wide range of shear flow velocities, which showed that the reentrainment model was reasonable.

Measurments of 2-D Image Soot Distribution for Different Piston-Shapes of a DI Diesel Engine Using Elastic Scattering, Laser-Induced Incandescence and Flame Luminosity (레이저 탄성산란법, 여기적열법, 자발광을 이용한 직분식 디젤엔진의 피스톤 형상에 따른 2차원 soot 분포 측정)

  • Noh, S.M.;Won, Y.H.;Park, J.G.;Choi, I.Y.;Chun, K.M.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.183-193
    • /
    • 2000
  • Soot formation and oxidation is closely related to the combustion phenomena inside a diesel engine. Laser-based diagnostics provide a means for improving our understanding of diesel combustion, because they have highly temporal and spatial ability. To understand the soot behavior we did preliminary study by taking flame luminosity photographs and 2-D images of soot distribution using Laser Elastic Scattering(LIS) and Laser-Induced Incandescence(LII). From the data we found that soot concentration was high in the bowl and disappeared from the central region in the late combustion stage and that soot exists in the flame using luminosity, LIS and LII.

  • PDF