• Title/Summary/Keyword: engine intake system

Search Result 348, Processing Time 0.025 seconds

Sound Quality Improvement of Car Interior Noise Through the Change of Order Spectrum (차수 스펙트럼 변화를 통한 차실내부 음질 향상)

  • Shin, Sung-Hwan;Hashimoto, Takeo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.329-334
    • /
    • 2013
  • Order spectrum analysis is widely used to grasp the features of noises due to powertrain system including engine and intake/exhaust system. It is known from many previous researches that order components related to the first and second firing frequencies of engine considerably affect the noise of car interior. The purpose of this paper is to find out the difference in sound quality: Pleasantness of car interior noise according to the change of its order spectrum. For this, car interior noises of 6-cylinder and 4-cylinder engines are recorded and their order spectrum levels are modified by applying adaptive digital filters. After subjective listening test employing paired comparison method is conducted, it is investigated that the level change of half-order components is a noticeable factor to improve Pleasantness of the car interior noises whereas level decrease of firing order does not always give the positive effect on its sound quality.

Corrosion of the Gas-Turbine Engine According to the Environment of the Korean Seas (우리나라 근해 해양환경에 따른 가스터빈엔진 부식에 대한 연구)

  • Oh, Kyungwon;Lim, Sehan
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.43-50
    • /
    • 2017
  • The sea of the Korean peninsula has undergone various marine changes, including naval vessels, naval operational aircrafts, air force fighters, coastal airports and airfields. In particular, salt directly affected by the marine environment, equipment operating under a high temperature / high speed as the gas turbine is the high temperature corrosion (Hot Corrosion) caused by sulfur components and salinity of the fuel used. When the height of the demister (air intake) is less than 7 m, the salinity of the salt entering the sea increases and the corrosion increases rapidly. In addition, the weapon systems operating in the East Sea than in the West Sea showed a 17% increase in the corrosion rate due to the relatively high salinity scattered by saline, wind, and wave. In order to minimize the salinity inflow, it should be operated at more than 13 m from the sea to minimize rapid hot corrosion.

A Study of the Reduction of Diesel-Engine Emissions for Off-Road Vehicles (비도로 차량용 디젤엔진의 배기가스 저감에 관한 연구)

  • Cho, Gyu-Baek;Kim, Hong-Suk;Kang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.577-583
    • /
    • 2011
  • To meet the requirements of the Tier 4 interim regulations for off-road vehicles, emissions of particulate matter (PM) and nitrogen oxides (NOx) must be reduced by 95% and 30%, respectively, compared to current regulations. In this research, both the DPF and HPL EGR systems were investigated, with the aim of decreasing the PM and NOx emissions of a 56-kW off-road vehicle. The results of the experiments show that the DOC-DPF system is very useful for reducing PM emissions. It is also found that the back pressure is acceptable, and the rate of power loss is less than 5%. By applying the HPL EGR system to the diesel engine, the NOx emissions under low- and middle-load conditions are reduced effectively because of the high differential pressure between the turbocharger inlet and the intake manifold. The NOx emissions can be decreased by increasing the EGR rate, but total hydrocarbon (THC) emission increases because of the increased fuel consumption needed to compensate for the power loss caused by EGR and DPF.

Evaluation of EGR applicability for NOx reduction in lean-burn LPG direct injection engine (초희박 LPG 직접분사식 엔진에서 질소산화물 저감을 위한 배기재순환 적용성 평가)

  • Park, Cheolwoong;Cho, Seehyeon;Kim, Taeyoung;Cho, Gyubaek;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.22-28
    • /
    • 2015
  • In order to keep the competitiveness of LPG fuel for transportation fuel, the difference in fuel consumption with gasoline and cost for an aftertreatment system should be reduced with continuous development of technology for LPG engine. In the present study, spray-guided type direct injection combustion system, whose configuration is composed of direct injector in the vicinity of spark plug, was employed to realize stable lean combustion. A certain level of nitrogen oxides($NO_x$) emits due to a locally rich mixture regions in the stratified mixture. With the application of EGR system for the reduction of $NO_x$, 15% of $NO_x$ reduction was achieved whereas fuel consumption and hydrocarbon emission increased. By the application of EGR, the combustion speed reduced especially appeared at initial flame development period and peak heat release rates and increasing rates for heat release rate decreased as EGR rate increased due to the dilution effect of intake air.

Car Exhaust Gas Detection and Self-Diagnosis System using ZigBee and CAN Communications (ZigBee와 CAN 통신을 이용한 자동차 배기가스 검출 및 자기진단 시스템)

  • Chun, Jong-Hun;Kim, Kuk-Se;Park, Jong-An
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.48-56
    • /
    • 2008
  • This study provides to car driver with car exhaust gas and sensor information which are car trouble code in engine and many sensors when the car has some problems. This is to provide car manager with many information of car sensors when we go to vehicle maintenance. For example, information of engine RPM, fuel system, intake air temperature, air flow sensors and oxygen sensors can provide to owner or garage, and also add to multimedia system for mp3 files and video files. This system consists of embedded linux system of low power while driving the car which uses OBD-II protocols and zigbee communication interface from CAN communication of car system to self-diagnosis embedded system of car. Finally, low power embedded system has a lot of application and OBD-II protocols for embedded linux system and CAN communication which get sensor informations of car control sensor system while driving the car.

  • PDF

The Developement of Moving Bandpass Filter for Improving Noise Reduction of Automative Intake in Rapid Acceleration Using ANC (능동제어기법을 이용한 자동차의 급가속 흡기소음 저감을 위한 Moving Bandpass Filter의 개발)

  • Jeon Kiwon;Oh Jaeeung;Lee Choonghui;Abu Aminudin;Lee Jungyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.152-159
    • /
    • 2005
  • The method of induction noise reduction can be classified by using passive control or active control method. However, the passive control method has a demerit to reduce the effect of noise reduction to low frequency (below) 500Hz) range and to be limited in a space of the engine room. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used in LMS (Least-Mean-Square) algorithm because it can obtain the complex transfer function easily in real-time. Especially, Filtered-X LMS (FXLMS) algorithm is applied to an ANC system. However, the convergence performance of LMS algorithm could not match if the FXLMS algorithm is applied to an active control of the induction noise under rapidly accelerated driving conditions. So, in order to solve the problem in this study, the Moving Bandpass Filter(MBPF) was proposed and implemented. The ANC using MBPF for the reduction of the induction noise shows that more noise reduction as 4dB than without MBPF.

Characteristics and Development Trends of Heat-Resistant Composites for Flight Propulsion System (비행체 추진기관용 내열 복합재의 특성 및 개발 동향)

  • Hwang, Ki-Young;Park, Jong Kyoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.629-641
    • /
    • 2019
  • In order to limit the temperature rise of the structure to a certain level or less while maintaining the aerodynamic shape of solid rocket nozzle by effectively blocking a large amount of heat introduced by the combustion gas of high temperature and high pressure, the heat-resistant materials such as C/C composite having excellent ablation resistance are applied to a position in contact with the combustion gas, and the heat-insulating materials having a low thermal diffusivity are applied to the backside thereof. SiC/SiC composite, which has excellent oxidation resistance, is applied to gas turbine engines and contributes to increase engine performance due to light weight and heat-resistant improvement. Scramjet, flying at hypersonic speed, has been studying the development of C/SiC structures using the endothermic fuel as a coolant because the intake air temperature is very high. In this paper, characteristics, application examples, and development trends of various heat-resistant composites used in solid rocket nozzles, gas turbine engines, and ramjet/scramjet propulsions were discussed.

Comparison of Combustion Characteristics On the Basis of the Dilution Ratio in Diesel Engines with LPL EGR (저압 EGR을 적용한 디젤엔진의 희석비에 따른 연소 특성 비교)

  • Lim, Gi-Hun;Park, Jun-Hyuk;Choi, Young;Lee, Sun-Youp;Kim, Yong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.525-531
    • /
    • 2011
  • Exhaust gas recirculation (EGR) is more effective than selective catalytic reduction (SCR) or lean $NO_x$ trap (LNT) for the reduction of $NO_x$ emissions in diesel engines. A large amount of EGR gas is necessary to satisfy the stringent regulations on $NO_x$ emissions. Low pressure loop (LPL) EGR is almost independent of the variable geometry turbocharger (VGT) at a specific boost pressure, so LPL EGR is better than conventional high pressure loop (HPL) EGR in terms of EGR supply. We compare the influence of HPL EGR and LPL EGR on the combustion characteristics at a constant boost pressure in a diesel engine. The dilution ratio was employed as an independent parameter to analyze the effect of the dilution of the intake charge for each EGR loop. At the same level of $NO_x$ emissions, the fuel consumption and smoke opacity were slightly lower for LPL EGR than for HPL EGR.

Design of Gun Launched Ramjet Propelled Artillery Shell with Inviscid Flow Assumption (비점성 유동을 가정한 포 발사 램제트 추진탄 설계)

  • Kang, Shinjae;Park, Chul;Jung, Woosuk;Kwon, Taesoo;Park, Juhyeon;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.52-60
    • /
    • 2015
  • Operation area of corps was expanded under military reformation, and extending range of 155 mm howitzer became important issue. New approach is needed to extend range to 80 kim. Ramjet engine is air breathing engine, and it can provide specific impulse several times more than solid rocket motor so that range is extended using same weight of propellant. If the ramjet engine is gun-launched system, it does not require any other booster because muzzle velocity is near Mach 3. Especially solid fuel ramjet (SFRJ) does not have any moving part so that it is favorable for gun-launching system which is under high stress during launching. In this paper, we design air intake, combustion chamber, and nozzle of 155 mm gun launched ramjet propelled artillery shell with inviscid flow assumption. We conduct parameter study to have range more than 80 km, and maximum high explosive volume.

Fuel Concentration Measurements by Laser Rayleigh Scattering (레이저 Rayleigh 산란을 이용한 연료농도의 계측)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Lee, Jae-Won;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.199-205
    • /
    • 2008
  • In this study, a system to measure continuously the fuel concentration in a steady flow rig on the basis of Rayleigh scattering is presented. The system can be employed to measure both the temporal and the spatial distribution. Also, it is possible to calibrate the system for the measurement of accurate absolute concentration. Firstly, the system was tested at a calibration chamber for the determination of scattering cross section from propane, butane, acetylene, Freon-12 and Genetron 143a. After this, the system was adapted to a steady flow rig to measure the temporal and spatial fuel concentration. The rig is composed of cylinder head, intake manifold, injector, and transparent cylinder which can simulate internal combustion engine. To cope with the problem of Mie scattering interference, a software filter was developed, which is based on the rise time and the time constant of the photomultiplier-amplifier system. The results show that LRS can provide useful informations about concentration field and the software filter is very effective method to remove Mie interference.

  • PDF