Kim, T.H.;Yoshikawa, M.;Narita, M.;Obara, T.;Ohyagi, S.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2004.03a
/
pp.85-92
/
2004
As a research to develop a SCRAM jet engine is actively conducted, a necessity to produce a high-enthalpy flow in a laboratory is increasing. In order to develop the SCRAM-jet engine, stabilized combustion in a supersonic flow-field should be attained, in which a duration time of flow is extremely short. Therefore, a mixing process of breathed air and fuel, which is injected into supersonic flow-fields is one of the most important problem. Since, the flow inside SCRAM jet engine has high-enthalpy, an experimental facility is required to produce such high-enthalpy flow-field. In this study, a detonation-driven shock tunnel was built and was used to produce high-enthalpy flow. Further-more, SCRAM jet engine model equipped backward-facing step was installed at test section and flow-fields were visualized using color-schlieren technique and high speed video camera. The fuel was injected perpendicular to the flow of Mach number three behind backward-facing step. The height of the step, distance of injection and injection pressure were changed to investigate the effects of step on a mixing characteristic between air and fuel. The schlieren photograph and pressure histories show that the fuel was ignited behind the step.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2010.05a
/
pp.25-28
/
2010
The Cold flow and ignition tests have been performed for a technology demonstration model of 75-tonf liquid rocket engine thrust chamber which was designed and manufactured on the basis of the previous development experience of a 30-tonf liquid rocket engine thrust chamber. The hydrodynamic characteristics of the facility supply pipelines and the filling time of the cooling kerosene were obtained through the cold flow tests. The ignition cyclogram was determinded using the results and the ignition test was successfully carried out. The acquired data and test technique of present ignition test will be used in hot firing tests.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
v.y2005m4
/
pp.1-1
/
2005
Japan Aerospace Exploration Agency(JAXA) has been conducting research and development of the Scramjet engines and their derivative combined cycle engines as hypersonic propulsion system for space access. Its history will be introduced first, and its recent advances, focusing on the engine performance progress, will follow. Finally, future plans for a flight test of scramjet and ground test of combined cycle engine will be introduced. Two types of test facilities for testing those hypersonic engines. namely, the 'Ramjet Engine Test Facility (RJTF)' and the 'High Enthalpy Shock Tunnel (HIEST)' were designed and fabricated during 1988 through 1996. These facilities can test engines under simulated flight Mach numbers up to 8 for the former, whereas beyond 8 for the latter, respectively. Several types of hydrogen-fueled scramjet engines have been designed, fabricated and tested under flight conditions of Mach 4, 6 and 8 in the RJTF since 1996. Initial test results showed that the thrust was insufficient because of occurrence of flow separation caused by combustion in the engines. These difficulty was later eliminated by boundary-layer bleeding and staged fuel injection. Their results were compared with theory to quantify achieved engine performances. The performances with regards to combustion, net thrust are discussed. We have reached the stage where positive net thrust can be attained for all the test coditions. Results of these engine tests will be discussed. We are also intensively attempting the improvement of thrust performance at high speed condition of Mach 8 to 15 in High Enthalpy Shock Tunnel (HIEST). Critical issues for this purposemay be air/fuel mixing enhancement, and temperature control of combustion gas to avoid thermal dissociation. To overcome these issues we developed the Hypermixier engine which applies stream-wise vortices for mixing enhancement, and the M12-engines which optimizes combustor entrance temperature. Moreover, we are going to conduct the flight experiment of the Hypermixer engine by utilizing flight test infrastructure (HyShot) provided by the University of Queensland in fall of 2005 for comparison with the HIEST result. The plan of the flight experiment is also presented.
Journal of the Korean Society of Propulsion Engineers
/
v.8
no.2
/
pp.18-24
/
2004
A fuel spiking test was performed to measure the surge margin of the compressor in a gas turbine engine. During the test, fuel spiking signal is superposed on the engine controller demand signals and the combined signals are used to control a fuel control valve. For the superposition, a subsystem composed of a fuel controller and a function generator is used. The real engine test was performed at the Altitude Engine Test Facility (AETF) in Korea Aerospace Research Institute (KARI). In the preliminary test, the fuel spiking signals are in good agreement with the dynamic pressure at the fuel line and at the compressor discharge point. After the preliminary test, a fuel spiking test to measure the surge point at a specific engine speed was performed. The test results show that the fuel spiking test is very effective in the measurement of surge.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.30
no.5
/
pp.62-70
/
2002
Methodology of predicting steady performance of gas turbine engine from transient test data was explored to develop an economic performance test technique. Discrepancy of transient performance from steady performance was categorized as dynamic, thermal and aerodynamic transient effects. Each effect was mathematically modeled and quantified to provide correction factors for calculating steady performance. Engine performance tests were conducted at Altitude Engine Test Facility of KARI. The influence of engine inlet/outlet condition change on engine performance was corrected firstly, and then steady performance was predicted from the correction factors. The result was compared with steady performance test data. This correction method showed an acceptable level of precision, 3.68% difference of fuel flow.
Lee, Kyung-Jae;Yang, Inyoung;Kim, Chun Taek;Kim, Dongsik;Baek, Cheulwoo;Yang, Gyaebyung
Journal of the Korean Society of Propulsion Engineers
/
v.22
no.3
/
pp.119-127
/
2018
A test stand for an altitude test of reciprocating engine was designed, manufactured and validated by preliminary tests and simple calculations. The test stand was designed to interface with the altitude turbo-shaft engine test facility of Korea Aerospace Research Institute. Many limiting conditions for altitude test of reciprocating engine were assumed and the test stand was developed to satisfy these limitations. The test stand design was focused especially on the altitude, Mach number and fuel temperature control for reciprocating engine altitude tests with smaller air and fuel flow than those of turbo shaft engines.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2004.03a
/
pp.380-384
/
2004
A fuel spiking test was performed to measure the surge margin of the compressor in a gas turbine engine. During the test, fuel spiking signal was superimposed on the engine controller demand and the mixed signals were used to control a fuel line servo-valve. For the superimposition, a subsystem composed of a fuel controller and a function generator was used. During the fuel spiking test, the original scheduled fuel signals and the modified signals were compared to guarantee the consistency excluding the spiking signals. The spiking signals were carefully selected to maintain the engine speed constant. The fuel spiking effects were checked by three dynamic pressure sensors. Sensors were placed before the servo-valve, after the servo-valve, and after the compressor location, respectively. The modulations of the spiking signal duration and fuel flow rate were examined to make the- operating point approach the surge region. The real engine test was performed at the Altitude Engine Test Facility (AETF) in Korea Aerospace Research Institute (KARI). In the real engine test, fuel spiking signals with 25~50 ㎳ of spiking signal time and 17~46 % of base fuel flow rate condition were used. The dithering signal was 5~6 ㎃ at 490 Hz. The test results showed good agreement between the fuel spiking signals and the fuel line pressure signals. Also, the compressor discharge pressure signals showed fuel spiking effects and the changes of the operating point on the compressor characteristic map could be traced.
The forwarding enging, which handles the incoming frames and forwards them to the appropriate outgoing interface, is the crucial factor of the router´s performance. As the MPLS label edge router provides the facility that it is capable of interworking with various kinds of networks, the forwarding engine should have the flexibility processing the corresponding types of frames from such network interfaces. In order to support the flexibility, we implement the forwarding engine for the MPLS LER with ATM interfaces based on the programmable Ethernet packet processor. By exploiting instinct loop-back functionality of Ethernet packet processor, our forwarding engine handles and forwards the frames from/to ATM interfaces. The performance of our forwarding engine is evaluated by experiments on the effect of looping frames back and the number of Ethernet packet processor´s instructions.
Journal of the Korean Society of Propulsion Engineers
/
v.26
no.2
/
pp.47-59
/
2022
Liquid hydrogen/liquid oxygen rocket engines with highest specific impulse have been developed since the 1950s and used until now to maximize the capability of space launch vehicles. Domestic liquid hydrogen infrastructures for the production, transportation and distribution are being expanded at world-class level with the rise of hydrogen economy, which is a great opportunity for the performance enhancement for indigenous space launch vehicles. In this paper, feasibility of applying liquid hydrogen as a propellant is investigated in various aspects. The status of domestic liquid hydrogen infrastructure, the technologies required for liquid hydrogen engines, and operational aspects for safe handling of hydrogen are reviewed. In addition, test facilities for developing hydrogen engines are introduced briefly.
Journal of the Korean Society of Propulsion Engineers
/
v.11
no.1
/
pp.64-70
/
2007
A test facility was developed where an inducer for a liquid rocket engine turbopump can be tested using liquid nitrogen as a working fluid. At the facility, a hydrodynamic performance test and a cavitation performance test for an oxidizer turbopump were carried out. Head-flow relation at liquid nitrogen test was similar to the case at water test. However, cavitation performance at the liquid nitrogen was superior to the case at water test, which results from the thermodynamic effect of cavitation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.