• Title/Summary/Keyword: energy-efficient communication

Search Result 697, Processing Time 0.027 seconds

Network Performance Verification for Next-Generation Power Distribution Management System Using FRTU Simulator (FRTU 시뮬레이터를 이용한 차세대 배전지능화시스템 네트워크 성능검증)

  • Yeo, Sang-Uk;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.523-529
    • /
    • 2020
  • Power distribution management system is essential for the efficient management and operation of power distribution networks. The power distribution system is a system that manages the distribution network based on IT, and has been evolving along with the development of the power industry. The current power distribution system is designed to operate at a relatively low network transmission speed based on the independent operation of the main equipment. However, due to distributed resources such as photovoltaic or energy storage devices, which are rapidly increasing in popularity in recent years, the operation of future distribution environments is becoming more complex, and various information needs to be collected in real time. In this study, the requirements of the next-generation power distribution system were derived to overcome the limitations of the existing power distribution system, and based on this, the communication network system and performance requirements for the distribution system were defined. In order to verify the performance of the designed system, a software-based terminal device simulator was developed because it takes excessive time and cost to introduce a large-scale system such as a power distribution system. Using the simulator, a test environment similar to the actual operation was established, and the number of terminal devices was increased up to 1,000. The proposed system was shown to satisfy the requirements to support the functions of the next-generation power distribution system, recording less than 10 % of the communication network bandwidth.

NOC Architecture Design Methodology (NOC 구조 설계 방법론)

  • Agarwal Ankur;Pandya A. S.;Asaduzzaman Abu;Lho Young-Uhg
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.57-64
    • /
    • 2006
  • Multiprocessor system on chip (MPSoC) platforms has set a new innovative trend for the SoC design. Quality of service parameters and performance matrix are leading to the adoption of new design methodology for SoC, which will incorporate highly scalable, reusable, predictable, cost and energy efficient platform not only for underlying communication backbone but also for the entire system architecture of NOC. Like the layered architecture for the communication backbone of NOC, we have proposed the entire system architecture for NOC to be a seven layered architecture in itself. Such a platform can separate the domain specific issues which will model concurrency along with the synchronization issues more effectively. For such a layered architecture, model of computation will provide a framework to that can model concurrency and synchronization issues which are natural for any application. Therefore it becomes extremely important to use a right computation model in a specific NOC region.

Design of Wearable LED Display Control System Using BLE (BLE를 이용한 웨어러블 LED 디스플레이 제어 시스템 설계)

  • Hwang, Hongtaek
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.99-106
    • /
    • 2016
  • Wearable display market is a consistently growing field to handle a smart device with ease. Wearable display is an efficient device that can show the information to the user. In this paper, propose the scheme of a wearable display using LED and implement it including controlling remotely with BLE. Traditional outdoor LED display requires the dedicated controller and its software. Therefore, to control those LED display, it should implement a driver and its own way of communication. The proposed method is to ensure the independence and extensibility by separating driver module and communication module for controlling LED display. In addition, by adopting a short-range communication with Bluetooth 4.0 and a LED driver with low-power technology, it can be showed to control system configuration and display with a smart device.

High Speed PLC-based Automatic Control System for a Smart LED Streetlight (스마트 LED 가로등을 위한 고속 전력선 통신 기반 자동제어 시스템)

  • Kim, Young-Suk;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.95-102
    • /
    • 2014
  • In this paper, we propose the high speed PLC-based automatic control system for a smart LED streetlight. The proposed the automatic control system were constructed of a power line modem part and monitoring part, streetlight controller part for the high speed communication frequency band and streetlight ballasts characterization and real-time remote control using a high-speed PLC network, and it was designed to meet to lighting grades conditions of KS road lighting standards. The proposed automatic control system were easy monitoring of the power consumption using PC through to the comparison result of the existing streetlight system. As a result, it was confirmed to the possibility of efficient operation for the real-time monitoring and maintenance by induction of reasonable power consumption through to the LED streetlight state checking and remote-control. In addition, we proved to improvement of expected effects for the power cost savings, the energy efficiency, and streetlight differentiation and advanced.

Upcycling of Waste Jelly-Filled Communication Cables (폐 젤리충진 통신케이블 업사이클링 연구)

  • Cho, Sungsu;Lee, Sooyoung;Hong, Myunghwan;Seo, Minhye;Lee, Dukhee;Uhm, Sunghyun
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.29-35
    • /
    • 2015
  • A feasibility test was carried out for upcycling of waste jelly-filled communication cables together with the development of environmentally friendly processes and equipments. High pressure water injection is proved to be an exceptionally environmentally friendly and highly efficient mechanical process. A batch-type cable barking equipment is designed and built on the basis of computational fluid dynamics modelling. It is optimized in terms of energy consumption and productivity with very high copper recovery of 99.5%. Copper nano-powder is prepared by an electrical wire explosion in ethanol media in order to improve the value of final products, and the preliminary economical assessment is also conducted.

Energy-Efficient Routing for Data Collection in Sensor Networks (센서 네트워크에서의 데이타 수집을 위한 라우팅 기법)

  • Song, In-Chul;Roh, Yo-Han;Hyun, Dong-Joon;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.33 no.2
    • /
    • pp.188-200
    • /
    • 2006
  • Once a continuous query, which is commonly used in sensor networks, is issued, the query is executed many times with a certain interval and the results of those query executions are collected to the base station. Since this comes many communication messages continuously, it is important to reduce communication cost for collecting data to the base station. In sensor networks, in-network processing reduces the number of message transmissions by partially aggregating results of an aggregate query in intermediate nodes, or merging the results in one message, resulting in reduction of communication cost. In this paper, we propose a routing tree for sensor nodes that qualify the given query predicate, called the query specific routing tree(QSRT). The idea of the QSRT is to maximize in-network processing opportunity. A QSRT is created seperately for each query during dissemination of the query. It is constructed in such a way that during the collection of query results partial aggregation and packet merging of intermediate results can be fully utilized. Our experimental results show that our proposed method can reduce message transmissions more than 18% compared to the existing one.

A study on statistical characteristics of time-varying underwater acoustic communication channel influenced by surface roughness (수면 거칠기에 따른 수면 경로의 시변 통신채널 통계적 특성 분석)

  • In-Seong Hwang;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.491-499
    • /
    • 2023
  • Scattering by Sea surface roughness occurs due to sea level roughness, communication performance deteriorates by causing frequency spread in communication signals and time variation in communication channels. In order to compare the difference in time variation of underwater acoustic communication channel according to the surface roughness, an experiment was performed in a tank owned by Hanyang University Ocean Acoustics Lab. Artificial surface roughness was created in the tank and communication signals with three bandwidths were used (8 kHz, 16 kHz, 32 kHz). The measured surface roughness was converted into a Rayleigh parameter and used as a roughness parameter, and statistical analysis was performed on the time-varying channel characteristics of the surface path using Doppler spread and correlation time. For the Doppler spread of the surface path, the Weighted Root Mean Square Doppler spread (wfσν) that corrected the effect of the carrier frequency and bandwidth of the communication signal was used. Using the correlation time of the surface path and the energy ratio of the direct path and the surface path, the correlation of total channels was simulated and compared with the measured correlation time of total channels. In this study, we propose a method for efficient communication signal design in an arbitrary marine environment by using the time-varying characteristics of the sea surface path according to the sea surface roughness.

A Bottom up Filtering Tuple Selection Method for Continuous Skyline Query Processing in Sensor Networks (센서 네트워크에서 연속 스카이라인 질의 처리를 위한 상향식 필터링 투플 선정 방법)

  • Sun, Jin-Ho;Chung, Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.280-291
    • /
    • 2009
  • Skyline Query processing is important to wireless sensor applications in order to process multi-dimensional data efficiently. Most skyline researches about sensor network focus on minimizing the energy consumption due to the battery powered constraints. In order to reduce energy consumption, Filtering Method is proposed. Most existing researches have assumed a snapshot skyline query processing and do not consider continuous queries and use data generated in ancestor node. In this paper, we propose an energy efficient method called Bottom up filtering tuple selection for continuous skyline query processing. Past skyline data generated in child nodes are stored in each sensor node and is used when choosing filtering tuple. We also extend the algorithms, called Support filtering tuple(SFT) that is used when we choose the additional filtering tuple. There is a temporal correlation between previous sensing data and recent sensing data. Thus, Based on past data, we estimate current data. By considering this point, we reduce the unnecessary communication cost. The experimental results show that our method outperforms the existing methods in terms of both data reduction rate(DRR) and total communication cost.

Energy-Efficient Data Aggregation and Dissemination based on Events in Wireless Sensor Networks (무선 센서 네트워크에서 이벤트 기반의 에너지 효율적 데이터 취합 및 전송)

  • Nam, Choon-Sung;Jang, Kyung-Soo;Shin, Dong-Ryeol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • In this paper, we compare and analyze data aggregation methods based on event area in wireless sensor networks. Data aggregation methods consist of two methods: the direct transmission method and the aggregation node method. The direct aggregation method has some problems that are data redundancy and increasing network traffic as all nodes transmit own data to neighbor nodes regardless of same data. On the other hand the aggregation node method which aggregate neighbor's data can prevent the data redundancy and reduce the data. This method is based on location of nodes. This means that the aggregation node can be selected the nearest node from a sink or the centered node of event area. So, we describe the benefits of data aggregation methods that make up for the weak points of direct data dissemination of sensor nodes. We measure energy consumption of the existing ways on data aggregation selection by increasing event area. To achieve this, we calculated the distance between an event node and the aggregation node and the distance between the aggregation node and a sink node. And we defined the equations for distance. Using these equations with energy model for sensor networks, we could find the energy consumption of each method.

Prolonging Lifetime of the LEACH Based Wireless Sensor Network Using Energy Efficient Data Collection (에너지 효율적인 데이터 수집을 이용한 LEACH 기반 무전 센서 네트워크의 수명 연장)

  • Park, Ji-Won;Moh, Sang-Man;Chung, Il-Yong;Bae, Yong-Geun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.175-183
    • /
    • 2008
  • In wireless sensor networks with ad hoc networking capability, sensor nodes are battery operated and are usually disposable once deployed. As a result, each sensor node senses and communicates with limited energy and, thus, energy efficiency has been studied as a key design factor which determines lifetime of a wireless sensor network, and it is more improved recently by using so-called cross-layer optimization technique. In this paper, we propose and implement a new energy saving mechanism that reduces energy consumption during data collection by controlling transmission power at sensor nodes and then measure its performance in terms of lifetime improvement for the wireless sensor network platform ZigbeX. When every sensor node transmits sensed data to its clusterhead, it controls its transmission power down to as low level as communication is possible, resulting in energy saving. Each sensor node controls its transmission power based on RSSI(Received Signal Strength Indicator) of the packet received from its clusterhead. In other words, the sensor node can save energy by controlling its transmission power down to an appropriate level that its clusterhead safely receives the packet it transmits. According to the repetitive experiment of the proposed scheme on the ZigbeX platform using the packet analyzer developed by us, it is observed that the network lifetime is prolonged by up to 21.9% by saying energy during the data collection occupying most amount of network traffic.