• 제목/요약/키워드: energy storage properties

검색결과 575건 처리시간 0.029초

파라핀을 이용한 건축용 시트형 잠열축열재의 축열특성에 관한 실험적 연구 (An Experimental Study on the Heat Storage Properties of Phase Change Material Using Paraffin Sheets in Building)

  • 고진수;김병윤;박성우
    • 한국건축시공학회지
    • /
    • 제11권5호
    • /
    • pp.435-441
    • /
    • 2011
  • 기 발표된 보고서에 따르면, 철근콘크리트 건축물을 전과정 평가 한 결과, 온실가스가 신축과 해체 등을 제외한 냉 난방 사용의 유지관리 단계에서 전체 발생량의 70 % 이상 배출한다고 보고하였다. 이는 건축물로 인한 온실가스 배출량을 줄이기 위해서는 유지관리 단계가 중요하고, 건축물의 설계단계 부터 에너지 소비를 최소화할 수 있는 유지관리 계획이 필요함을 의미한다. 따라서, 본 연구에서는 건축물의 사용단계에서 냉방에너지 소비를 줄일 수 있는 방법으로 상변화물질(Phase Change Material)인 파라핀 시트를 건축물의 개구부 또는 벽체 마감재로의 활용 가능성을 검토하였다. 온도조절이 가능한 챔버 내부에 파라핀 시트를 적용한 축열실과 적용하지 않은 일반실을 제작하고, 대류와 직사일광의 조건으로 각각 챔버 온도를 상승시켜 실험체 내부의 온도변화를 측정하였다. 실험 결과, 파라핀 시트를 적용한 모든 조건의 실험체에서 상변화 온도인 $26^{\circ}C$ 전후에서, 일반실보다 $1{\sim}3^{\circ}C$정도의 실내온도 상승을 지연시키는 것으로 나타났다. 결론적으로 외부 에너지가 상변화에 소비되어 온도변화가 없는 잠열축열재를 건축물 마감재로 활용함으로써, 여름철 실내 냉방 에너지 소비를 줄일 수 있다는 사실을 확인하였다.

기계적합금법에 의해 제조된 TiNi합금의 수소화반응특성에 관한 연구 (A Study on the Hydrogenation Properties of TiNi Alloy Fabricated by Mechanical Alloying Method)

  • 안효준;김보수;황진환;안인섭;김기원;허보영
    • 한국수소및신에너지학회논문집
    • /
    • 제5권2호
    • /
    • pp.73-79
    • /
    • 1994
  • The hydrogenation behavior of Ti-Ni powders prepared by mechanical alloying in a high energy ball mill have been investigated by P-C isotherm curves, DSC(differential scanning calorimetry), X-ray diffractometer, SEM(scanning electron microscope). Amorphous TiNi phase was formed after 10 milling hours. The hydrogen storage capacity gradually decreased as a function of mechanical alloying time. There appears the DSC endothermic peak due to hydrogen evolution of amorphous hydride phase.

  • PDF

Porous Electrodes with Lower Impedance for Vanadium Redox Flow Batteries

  • Park, Su Mi;Kim, Haekyoung
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.638-645
    • /
    • 2015
  • Vanadium redox flow batteries (VRFBs) have been investigated for their potential utility as large energy storage systems due to their advantageous performances in terms of long cycle life, high energy efficiency, low cost, and flexible design. Carbon materials are typically used as electrodes in redox reactions and as a liquid electrolyte support. The activities, surface areas, and surface morphologies of porous carbon materials must be optimized to increase the redox flow battery performance. Here, to reduce the resistance in VRFBs, surface-modified carbon felt electrodes were fabricated, and their structural, morphological, and chemical properties were characterized. The surface-modified carbon felt electrode improved the cycling energy efficiencies in the VRFBs, from 65% to 73%, due to the improved wettability with electrolyte. From the results of impedances analysis with proposed fitting model, the electrolyte-coupled polarization in VRFB dramatically decreased upon modification of carbon felt electrode surface. It is also demonstrated that the compressibility of carbon felt electrodes was important to the VRFB polarization, which are concerned with mass transfer polarization. The impedance analysis will be helpful for obtaining better and longer-lived VRFB performances.

Mg-13.5wt%Ni 합금 수소화합물의 수소방출에 대한 부피법에 의한 열분석 (Volumetric Thermal Analysis of Hydrogen Desorption from Mg-13.5wt%Ni Hydride)

  • 한정섭;박경덕
    • 한국수소및신에너지학회논문집
    • /
    • 제26권4호
    • /
    • pp.308-317
    • /
    • 2015
  • To investigate the effect of microstructure on the formation of the desorption peak, the volumetric thermal analysis technique (VTA) was applied to the Mg-13.5 wt% Ni hydride system. The sample made by the HCS (hydriding combustion synthesis) process had two kinds of Mg microstructures. Linear heating was started with various constant heating rates. Only one peak was appeared in the case of the small initial hydrogen wt% (0.83 wt%). Yet, two peaks were appeared with increasing initial hydrogen wt% (1.85 and 3.73 wt%) when only Mg was hydrogenated. The first peak was formed through the evolution of hydrogen from $MgH_2$, made by eutectic Mg. The second peak was formed through the evolution of hydrogen from $MgH_2$, made by primary Mg. Therefore, this result shows that the microstructure also has a considerable effect on forming the desorption peak. We have also derived the hydrogen desorption equations by VTA to get apparent activation energy when the rate-controlling step for the desorption of the hydrided system is the diffusion of hydrogen through the ${\alpha}$ phase and the chemical reaction ${\beta}{\rightarrow}{\alpha}$.

탄소나노섬유의 밀링에 따른 전기화학적 에너지 저장 특성 (Electrochemical Energy Storage of Milled Carbon Nanofiber)

  • 이혜민;전현;최원경;조태환
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.527-533
    • /
    • 2011
  • CNFs had been well addressed due to numerous promising applications in science and technology. Besides the same physicochemical properties of ordinary carbon materials such as active carbons and carbon black, they exhibit specific, e.g., tubular or fibrous structures, a large surface area, high electrical conductivity stability, as well as extremely high mechanical strengh and modulus, which make them a superior material for electrochemical capacitors. In this study, CNFs were pretreated by mechanical milling with different time in mortar and pestle. The milled CNFs were used as active material of electrode whose electrochemical property was tested to find physicochemical characterization variation. CNF electrode milled for 5 min has the highest electric capacitance. XPS spectrum were employed to explore changes in functional group induced from mechanical milling. Crystal size was calculated to analyze change of peak from different milling time by XRD. The CNF milled for 5 min has the largest crystal size and the highest electric capacitance.

음식물쓰레기로부터 제조한 분체연료 연소특성 (A Study on Combustion Characteristics of Purverized Fuel Made from Food Waste)

  • 손현석;박영성;윤종득;이호남;이승훈;김상국
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.149-152
    • /
    • 2008
  • Three properties of food waste are water 80%, ash 3%, volatile matter 17%. When food waste goes through treatment process such as removal of foreign substances, removal of water as well as sodium, dryness, and pulverization, it transforms into 4,000Kcal/kg purverized fuel if moisture content is below 13%. Fuel ratio(fixed carbon/volatile matter) of purverized fuel is low compared with bituminuous coal. Ignition temperature measured by thermogravimetry analyzer is about $460^{\circ}C$. Combustion test of purverized fuel have been performed using energy recovery facility which include storage tank of dewatered cake, dryer, hammer mill, combuster including burner, boiler, flue gas treatment equipment. When 160-180 kg/hr of fuel is steadily supplied to burner for 3 hours, combueter temperature reaches about $1000^{\circ}C$ and CO is 77-103ppm at 1.55 excess air ratio and SOx and Cl are under 2ppm and 1ppm, respectively. This experiment demonstrate that purverized fuel made from food waste could be an alternative clean energy for high oil price era

  • PDF

상변화물질의 대류유동 및 열전달 현상에 관한 연구 (Study of Convective Flow and Heat Transfer Phenomena in the Phase Change Material)

  • 손상석;이채문;이재헌;임장순
    • 태양에너지
    • /
    • 제6권2호
    • /
    • pp.43-53
    • /
    • 1986
  • The objective of this study is to report on the characterics of convective flow and heat transfer during metling process in order to provide design information for thermal energy storage systems which use phase change material. In present study, flow and heat transfer characteristics of the Phase Change Material in the Open Top Model (O.T.M) and in the Closed Top Model (C.T.M) were studied numerically by the control volume formulation using the algebraic non-orthogonal coordinate transformation. For the calculation procedure, the physical properties of fluid are assumed to be constant except density which is linely dependent on temperature in the bouyancy term of momentum equations. At start of melting process, the thickness of melting layer is assumed from the Stefan Problem assumption. The heat transfer results of Open Top Model and Closed Top Model are compared with the parameters of Grashof number and aspect ratio. It was found that heat transfer phenomena in melted region was greatly affected by buoyancy-driven natural convection and the melting distance of Open Top Model at the upper region is greater than that of Closed Top Model.

  • PDF

수퍼커패시터 응용을 위한 EGaIn 액체 금속 전극의 전기화학 특성 연구 (Study on the Electrochemical Characteristics of a EGaIn Liquid Metal Electrode for Supercapacitor Applications)

  • 소주희;구형준
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.176-181
    • /
    • 2016
  • Recent years, supercapacitors have been attracting a growing attention as an efficient energy storage, due to their long-lifetime, device reliability, simple device structure and operation mechanism and, most importantly, high power density. Along with the increasing interest in flexible/stretchable electronics, the supercapacitors with compatible mechanical properties have been also required. A eutectic gallium-indium (EGaIn) liquid metal could be a strong candidate as a soft electrode material of the supercapacitors because of its insulating surface oxide layer for electric double layer formation. Here, we report the electrochemical study on the charging/reaction process at the interface of EGaIn liquid metal and electrolyte. Numerical fitting of the charging current curves provides the capacitance of EGaIn/insulating layer/electrolyte (${\sim}38F/m^2$). This value is two orders of magnitude higher than a capacitance of a general metal electrode/electrolyte interface.

A Study on the Output Stabilization of the Nd:YAG Laser by the Monitoring of Capacitor Charging Voltage

  • Noh, Ki-Kyong;Song, Kum-Young;Park, Jin-Young;Hong, Jung-Hwan;Park, Sung-Joon;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권3호
    • /
    • pp.96-100
    • /
    • 2004
  • The Nd: YAG laser is commonly used throughout many fields such as accurate material processing, IC marking, semiconductor annealing, medical operation devices, etc., due to the fact that it has good thermal and mechanical properties and is easy to maintain. In materials processing, it is essential to vary the laser power density for specific materials. The laser power density can be mainly controlled by the current pulse width and pulse repetition rate. It is important to control the laser energy in those fields using a pulsed laser. In this paper we propose the constant-frequency current resonant half-bridge converter and monitoring of capacitor charging voltage. This laser power supply is designed and fabricated to have less switching loss, compact size, isolation with primary and secondary transformers, and detection of capacitor charging voltage. Also, the output stabilization characteristics of this Nd: YAG laser system are investigated. The test results are described as a function of laser output energy and flashlamp arc discharging constant. At the energy storage capacitor charges constant voltage, the laser output power is 2.3% error range in 600[V].

레독스 플로우 전지의 레독스 쌍 (Redox Pairs in Redox Flow Batteries)

  • 황병현;김기택
    • 전기화학회지
    • /
    • 제16권3호
    • /
    • pp.99-110
    • /
    • 2013
  • 레독스 플로우 전지(RFB)는 대형에너지 장치로서 신재생 에너지와 같은 전력발생이 일정하지 못한 상황이나 전력수요가 급증감하여 효율적인 에너지의 운용이 요구될 때 효과적으로 사용할 수 있는 전지모델이다. 일부 상용화된 종류도 있지만 다양한 레독스 쌍과 소재가 연구됨에 따라 개선의 여지가 많은 전지이다. 본 총설에서는 전지의 레독스 쌍(redox pair)의 종류들에 대한 설명을 통하여 레독스 플로우 전지의 전반적인 이해를 돕고자 한다. 레독스 쌍의 혼합오염, crossover, 이온 선택성, 용해도 등의 개선을 통해서 새로운 레독스 플로우 전지의 탄생을 기대할 수 있다. 용량의 개선을 위해서 다양한 수계 및 비수계 레독스 쌍의 연구가 되고 있는데 crossover에 의해 다소의 용량손실이 있다고 하더라도 혼합오염이 없는 전지라면 레독스 플로우 전지의 내구성의 장점을 살릴 수 있을 것이라 기대한다. 혼합오염이 없는 레독스 플로우 전지 중에는 멤브레인이 필요 없는 전지도 새로운 연구방향으로 모색되고 있다.