• Title/Summary/Keyword: energy storage properties

Search Result 575, Processing Time 0.022 seconds

Rheological Properties of ${\beta}-Glucan$ Isolated from Non-waxy and Waxy Barley (메성 및 찰성보리 ${\beta}-Glucan$의 리올로지 특성)

  • Choi, Hee-Don;Park, Yong-Gon;Jang, Eun-Hee;Seog, Ho-Moon;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.590-597
    • /
    • 2000
  • The rheological properties of ${\beta}-glucans$ isolated from non-waxy and waxy barley were investigated. ${\beta}-Glucan$ solutions showed pseudoplastic properties and their behaviors were explained by applying Power law model in the range of concentrations$(1{\sim}4%)$ and temperatures$(20{\sim}65^{\circ}C)$. The effects of temperature and concentration on the apparent viscosity at $700\;s^{-1}$ shear rate were examined by applying Arrhenius equation and power law equation, and their effect was more pronounced in waxy ${\beta}-glucan$ solutions. The activation energy for flow of ${\beta}-glucan$ solutions decreased with the increase of concentration, and the concentration-dependent constant A increased with the increase of temperature. The intrinsic viscosity of waxy ${\beta}-glucan$ was higher than that of non-waxy ${\beta}-glucan$. The transition from dilute to concentrate region occurred at a critical coil overlap parameter $C^*[{\eta}]=0.02.$ The slopes of non-waxy and waxy ${\beta}-glucan$ at $C[{\eta}] were similar, but the slope of waxy ${\beta}-glucan$ at $C[{\eta}]>C^*[{\eta}]$ was higher than that of non-waxy ${\beta}-glucan$. Dynamic viscoelasticity measurement showed that cross-over happened, and storage modulus was higher than loss modulus at frequency range above cross-over. ${\beta}-Glucan$ solutions formed weak gels after stored for 24 hr.

  • PDF

Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at CO2 Storage Condition (지중저장 조건에서 초임계CO2에 의한 포항분지 사암과 이암의 지화학적 풍화반응 연구)

  • Park, Jinyoung;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.221-234
    • /
    • 2013
  • Laboratory experiments for the reaction with supercritical $CO_2$ under the $CO_2$ sequestration condition were performed to investigate the mineralogical and geochemical weathering process of the sandstones and mudstones in the Pohang basin. To simulate the supercritical $CO_2$-rock-groundwater reaction, rock samples used in the experiment were pulverized and the high pressurized cell (200 ml of capacity) was filled with 100 ml of groundwater and 30 g of powdered rock samples. The void space of the high pressurized cell was saturated with the supercritical $CO_2$ and maintained at 100 bar and $50^{\circ}C$ for 60 days. The changes of mineralogical and geochemical properties of rocks were measured by using XRD (X-Ray Diffractometer) and BET (Brunauer-Emmett-Teller). Concentrations of dissolved cations in groundwater were also measured for 60 days of the supercritical $CO_2$-rock-groundwater reaction. Results of XRD analyses indicated that the proportion of plagioclase and K-feldspar in the sandstone decreased and the proportion of illite, pyrite and smectite increased during the reaction. In the case of mudstone, the proportion of illite and kaolinite and cabonate-fluorapatite increased during the reaction. Concentration of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased during the reaction, suggesting that calcite and feldspars of the sandstone and mudstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites in Pohang basin. The average specific surface area of sandstone and mudstone using BET analysis increased from $27.3m^2/g$ and $19.6m^2/g$ to $28.6m^2/g$ and $26.6m^2/g$, respectively, and the average size of micro scale void spaces for the sandstone and mudstone decreased over 60 days reaction, resulting in the increase of micro pore spaces of rocks by the dissolution. Results suggested that the injection of supercritical $CO_2$ in Pohang basin would affect the physical property change of rocks and also $CO_2$ storage capacity in Pohang basin.

Study on the Dissolution of Sandstones in Gyeongsang Basin and the Calculation of Their Dissolution Coefficients under CO2 Injection Condition (이산화탄소 지중 주입에 의한 경상분지 사암의 용해반응 규명 및 용해 반응상수값 계산)

  • Kang, Hyunmin;Baek, Kyoungbae;Wang, Sookyun;Park, Jinyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.661-672
    • /
    • 2012
  • Lab scale experiments to investigate the dissolution reaction among supercritical $CO_2$-sandstone-groundwater by using sandstones from Gyeongsang basin were performed. High pressurized cell system (100 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell, simulating the sub-surface $CO_2$ storage site. The first-order dissolution coefficient ($k_d$) of the sandstone was calculated by measuring the change of the weight of thin section or the concentration of ions dissolved in groundwater at the reaction time intervals. For 30 days of the supercritical $CO_2$-sandstone-groundwater reaction, physical properties of sandstone cores in Gyeongsang basin were measured to investigate the effect of supercritical $CO_2$ on the sandstone. The weight change of sandstone cores was also measured to calculate the dissolution coefficient and the dissolution time of 1 g per unit area (1 $cm^2$) of each sandstone was quantitatively predicted. For the experiment using thin sections, mass of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased, suggesting that plagioclase and calcite of the sandstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites. 0.66% of the original thin sec-tion mass for the sandstone were dissolved after 30 days reaction. The average porosity for C sandstones was 8.183% and it increased to 8.789% after 30 days of the reaction. The average dry density, seismic velocity, and 1-D compression strength of sandstones decreased and these results were dependent on the porosity increase by the dissolution during the reaction. By using the first-order dissolution coefficient, the average time to dissolve 1 g of B and C sandstones per unit area (1 $cm^2$) was calculated as 1,532 years and 329 years, respectively. From results, it was investigated that the physical property change of sandstones at Gyeongsang basin would rapidly occur when the supercritical $CO_2$ was injected into $CO_2$ sequestration sites.

A Transmission Electron Microscopy Study on the Crystallization Behavior of In-Sb-Te Thin Films (In-Sb-Te 박막의 결정화 거동에 관한 투과전자현미경 연구)

  • Kim, Chung-Soo;Kim, Eun-Tae;Lee, Jeong-Yong;Kim, Yong-Tae
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.279-284
    • /
    • 2008
  • The phase change materials have been extensively used as an optical rewritable data storage media utilizing their phase change properties. Recently, the phase change materials have been spotlighted for the application of non-volatile memory device, such as the phase change random access memory. In this work, we have investigated the crystallization behavior and microstructure analysis of In-Sb-Te (IST) thin films deposited by RF magnetron sputtering. Transmission electron microscopy measurement was carried out after the annealing at $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$ and $450^{\circ}C$ for 5 min. It was observed that InSb phases change into $In_3SbTe_2$ phases and InTe phases as the temperature increases. It was found that the thickness of thin films was decreased and the grain size was increased by the bright field transmission electron microscopy (BF TEM) images and the selected area electron diffraction (SAED) patterns. In a high resolution transmission electron microscopy (HRTEM) study, it shows that $350^{\circ}C$-annealed InSb phases have {111} facet because the surface energy of a {111} close-packed plane is the lowest in FCC crystals. When the film was heated up to $400^{\circ}C$, $In_3SbTe_2$ grains have coherent micro-twins with {111} mirror plane, and they are healed annealing at $450^{\circ}C$. From the HRTEM, InTe phase separation was occurred in this stage. It can be found that $In_3SbTe_2$ forms in the crystallization process as composition of the film near stoichiometric composition, while InTe phase separation may take place as the composition deviates from $In_3SbTe_2$.

Development of Marker-free Transgenic Rice Expressing the Wheat Storage Protein, Glu-1Dy10, for Increasing Quality Processing of Bread and Noodles (빵과 면의 가공적성 증진을 위한 밀 저장단백질 Glu-1Dy10을 발현하는 마커프리 형질전환 벼 개발)

  • Park, Soo-Kwon;Shin, DongJin;Hwang, Woon-Ha;Hur, Yeon-Jae;Kim, Tae-Heon;Oh, Se-Yun;Cho, Jun-Hyun;Han, Sang-Ik;Lee, Seung-Sik;Nam, Min-Hee;Park, Dong-Soo
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.618-625
    • /
    • 2014
  • Rice flour is used in many food products. However, dough made from rice lacks extensibility and elasticity, making it less suitable than wheat for many food products such as bread and noodles. The high-molecular weight glutenin subunits (HMW-GS) of wheat play a crucial role in determining the processing properties of the wheat grain. This paper describes the development of marker-free transgenic rice plants expressing a wheat Glu-Dy10 gene encoding the HMG-GS from the Korean wheat cultivar 'Jokyeong' using Agrobacterium-mediated co-transformation. Two expression cassettes, consisting of separate DNA fragments containing Glu-1Dy10 and hygromycin phosphotransferase II (HPTII) resistance genes, were introduced separately into Agrobacterium tumefaciens EHA105 for co-infection. Each EHA105 strain harboring Glu-1Dy10 or HPTII was infected into rice calli at a 3: 1 ratio of Glu-1Bx7 and HPTII. Among 290 hygromycin-resistant $T_0$ plants, we obtained 29 transgenic lines with both the Glu-1Dy10 and HPTII genes inserted into the rice genome. We reconfirmed the integration of the Glu-1Dy10 gene into the rice genome by Southern blot analysis. Transcripts and proteins of the Glu-1Dy10 in transgenic rice seeds were examined by semi-quantitative RT-PCR and Western blot analysis. The marker-free plants containing only the Glu-1Dy10 gene were successfully screened in the $T_1$ generation.