• Title/Summary/Keyword: energy security

Search Result 912, Processing Time 0.024 seconds

Communication and Security Technology Trends in Drone-assisted Wireless Sensor Network (드론 기반 무선 센서 네트워크의 통신 및 보안 기술 동향)

  • Wang, G.;Lee, B.;Ahn, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.3
    • /
    • pp.55-64
    • /
    • 2019
  • In drone-assisted wireless sensor networks, drones collect data from sensors in an energy-efficient manner and quickly distribute urgent information to sensor nodes. This article introduces recent communication and security schemes for drone-assisted wireless sensor networks. For the communication schemes, we introduce data collection optimization schemes, drone position and movement optimization schemes, and drone flight path optimization schemes. For the security schemes, we introduce authentication and key management schemes, cluster formation schemes, and cluster head election schemes. Then, we present some enhancement methodologies for these communication and security schemes. As a conclusion, we present some interesting future work items.

Identity-Based Key Management Scheme for Smart Grid over Lattice

  • Wangke, Yu;Shuhua, Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.74-96
    • /
    • 2023
  • At present, the smart grid has become one of the indispensable infrastructures in people's lives. As a commonly used communication method, wireless communication is gradually, being widely used in smart grid systems due to its convenient deployment and wide range of serious challenges to security. For the insecurity of the schemes based on large integer factorization and discrete logarithm problem in the quantum environment, an identity-based key management scheme for smart grid over lattice is proposed. To assure the communication security, through constructing intra-cluster and inter-cluster multi-hop routing secure mechanism. The time parameter and identity information are introduced in the relying phase. Through using the symmetric cryptography algorithm to encrypt improve communication efficiency. Through output the authentication information with probability, the protocol makes the private key of the certification body no relation with the distribution of authentication information. Theoretic studies and figures show that the efficiency of keys can be authenticated, so the number of attacks, including masquerade, reply and message manipulation attacks can be resisted. The new scheme can not only increase the security, but also decrease the communication energy consumption.

Attacks, Vulnerabilities and Security Requirements in Smart Metering Networks

  • Hafiz Abdullah, Muhammad Daniel;Hanapi, Zurina Mohd;Zukarnain, Zuriati Ahmad;Mohamed, Mohamad Afendee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1493-1515
    • /
    • 2015
  • A smart meter is one of the core components in Advanced Metering Infrastructure (AMI) that is responsible for providing effective control and monitor of electrical energy consumptions. The multifunction tasks that a smart meter carries out such as facilitating two-way communication between utility providers and consumers, managing metering data, delivering anomalies reports, analyzing fault and power quality, simply show that there are huge amount of data exchange in smart metering networks (SMNs). These data are prone to security threats due to high dependability of SMNs on Internet-based communication, which is highly insecure. Therefore, there is a need to identify all possible security threats over this network and propose suitable countermeasures for securing the communication between smart meters and utility provider office. This paper studies the architecture of the smart grid communication networks, focuses on smart metering networks and discusses how such networks can be vulnerable to security attacks. This paper also presents current mechanisms that have been used to secure the smart metering networks from specific type of attacks in SMNs. Moreover, we highlight several open issues related to the security and privacy of SMNs which we anticipate could serve as baseline for future research directions.

The Evaluation-based CBR Model for Security Risk Analysis (보안위험분석을 위한 평가기반 CBR모델)

  • Bang, Young-Hwan;Lee, Gang-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.7
    • /
    • pp.282-287
    • /
    • 2007
  • Information society is dramatically developing in the various areas of finance, trade, medical service, energy, and education using information system. Evaluation for risk analysis should be done before security management for information system and security risk analysis is the best method to safely prevent it from occurrence, solving weaknesses of information security service. In this paper, Modeling it did the evaluation-base CBD function it will be able to establish the evaluation plan of optimum. Evaluation-based CBD(case-based reasoning) functions manages a security risk analysis evaluation at project unit. it evaluate the evaluation instance for beginning of history degree of existing. It seeks the evaluation instance which is similar and Result security risk analysis evaluation of optimum about under using planning.

Reducing Cybersecurity Risks in Cloud Computing Using A Distributed Key Mechanism

  • Altowaijri, Saleh M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • The Internet of things (IoT) is the main advancement in data processing and communication technologies. In IoT, intelligent devices play an exciting role in wireless communication. Although, sensor nodes are low-cost devices for communication and data gathering. However, sensor nodes are more vulnerable to different security threats because these nodes have continuous access to the internet. Therefore, the multiparty security credential-based key generation mechanism provides effective security against several attacks. The key generation-based methods are implemented at sensor nodes, edge nodes, and also at server nodes for secure communication. The main challenging issue in a collaborative key generation scheme is the extensive multiplication. When the number of parties increased the multiplications are more complex. Thus, the computational cost of batch key and multiparty key-based schemes is high. This paper presents a Secure Multipart Key Distribution scheme (SMKD) that provides secure communication among the nodes by generating a multiparty secure key for communication. In this paper, we provide node authentication and session key generation mechanism among mobile nodes, head nodes, and trusted servers. We analyzed the achievements of the SMKD scheme against SPPDA, PPDAS, and PFDA schemes. Thus, the simulation environment is established by employing an NS 2. Simulation results prove that the performance of SMKD is better in terms of communication cost, computational cost, and energy consumption.

A Study on the Baseline Load Estimation Method using Heating Degree Days and Cooling Degree Days Adjustment (냉난방도일을 이용한 기준부하추정 방법에 관한 연구)

  • Wi, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.745-749
    • /
    • 2017
  • Climate change and energy security are major factors for future national energy policy. To resolve these issues, many countries are focusing on creating new growth industries and energy services such as smartgrid, renewable energy, microgrid, energy management system, and peer to peer energy trading. The financial and economic evaluation of new energy services basically requires energy savings estimation technologies. This paper presents the baseline load estimation method, which is used to calculate energy savings resulted from participating in the new energy program, using moving average model with heating degree days (HDD) and cooling degree days (CDD) adjustment. To demonstrate the improvement of baseline load estimation accuracy, the proposed method is tested. The results of case studies are presented to show the effectiveness of the proposed baseline load estimation method.

Numerical Simulation of the Characteristics of Electrons in Bar-plate DC Negative Corona Discharge Based on a Plasma Chemical Model

  • Liu, Kang-Lin;Liao, Rui-Jin;Zhao, Xue-Tong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1804-1814
    • /
    • 2015
  • In order to explore the characteristics of electrons in DC negative corona discharge, an improved plasma chemical model is presented for the simulation of bar-plate DC corona discharge in dry air. The model is based on plasma hydrodynamics and chemical models in which 12 species are considered. In addition, the photoionization and secondary electron emission effect are also incorporated within the model as well. Based on this model, electron mean energy distribution (EMED), electron density distribution (EDD), generation and dissipation rates of electron at 6 typical time points during a pulse are discussed emphatically. The obtained results show that, the maximum of electron mean energy (EME) appears in field ionization layer which moves towards the anode as time progresses, and its value decreases gradually. Within a pulse process, the electron density (ED) in cathode sheath almost keeps 0, and the maximum of ED appears in the outer layer of the cathode sheath. Among all reactions, R1 and R2 are regarded as the main process of electron proliferation, and R22 plays a dominant role in the dissipation process of electron. The obtained results will provide valuable insights to the physical mechanism of negative corona discharge in air.

Development of Protective Scheme against Collaborative Black Hole Attacks in Mobile Ad hoc Networks

  • Farooq, Muhammad Umar;Wang, Xingfu;Sajjad, Moizza;Qaisar, Sara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1330-1347
    • /
    • 2018
  • Mobile Ad hoc Network (MANET) is a collection of nodes or communication devices that wish to communicate without any fixed infrastructure and predetermined organization of available links. The effort has been made by proposing a scheme to overcome the critical security issue in MANET. The insufficiency of security considerations in the design of Ad hoc On-Demand Distance Vector protocol makes it vulnerable to the threats of collaborative black hole attacks, where hacker nodes attack the data packets and drop them instead of forwarding. To secure mobile ad hoc networks from collaborative black hole attacks, we implement our scheme and considered sensor's energy as a key feature with a better packet delivery ratio, less delay time and high throughput. The proposed scheme has offered an improved solution to diminish collaborative black hole attacks with high performance and benchmark results as compared to the existing schemes EDRIAODV and DRIAODV respectively. This paper has shown that throughput and packet delivery ratio increase while the end to end delay decreases as compared to existing schemes. It also reduces the overall energy consumption and network traffic by maintaining accuracy and high detection rate which is more safe and reliable for future work.

A Secure, Hierarchical and Clustered Multipath Routing Protocol for Homogenous Wireless Sensor Networks: Based on the Numerical Taxonomy Technique

  • Hossein Jadidoleslamy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.121-136
    • /
    • 2023
  • Wireless Sensor Networks (WSNs) have many potential applications and unique challenges. Some problems of WSNs are: severe resources' constraints, low reliability and fault tolerant, low throughput, low scalability, low Quality of Service (QoS) and insecure operational environments. One significant solution against mentioned problems is hierarchical and clustering-based multipath routing. But, existent algorithms have many weaknesses such as: high overhead, security vulnerabilities, address-centric, low-scalability, permanent usage of optimal paths and severe resources' consumption. As a result, this paper is proposed an energy-aware, congestion-aware, location-based, data-centric, scalable, hierarchical and clustering-based multipath routing algorithm based on Numerical Taxonomy technique for homogenous WSNs. Finally, performance of the proposed algorithm has been compared with performance of LEACH routing algorithm; results of simulations and statistical-mathematical analysis are showing the proposed algorithm has been improved in terms of parameters like balanced resources' consumption such as energy and bandwidth, throughput, reliability and fault tolerant, accuracy, QoS such as average rate of packet delivery and WSNs' lifetime.

A Hybrid Blockchain-Based Approach for Secure and Efficient IoT Identity Management

  • Abdulaleem Ali Almazroi;Nouf Atiahallah Alghanmi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.11-25
    • /
    • 2024
  • The proliferation of IoT devices has presented an unprecedented challenge in managing device identities securely and efficiently. In this paper, we introduce an innovative Hybrid Blockchain-Based Approach for IoT Identity Management that prioritizes both security and efficiency. Our hybrid solution, strategically combines the advantages of direct and indirect connections, yielding exceptional performance. This approach delivers reduced latency, optimized network utilization, and energy efficiency by leveraging local cluster interactions for routine tasks while resorting to indirect blockchain connections for critical processes. This paper presents a comprehensive solution to the complex challenges associated with IoT identity management. Our Hybrid Blockchain-Based Approach sets a new benchmark for secure and efficient identity management within IoT ecosystems, arising from the synergy between direct and indirect connections. This serves as a foundational framework for future endeavors, including optimization strategies, scalability enhancements, and the integration of advanced encryption methodologies. In conclusion, this paper underscores the importance of tailored strategies in shaping the future of IoT identity management through innovative blockchain integration.