• Title/Summary/Keyword: energy resolution

Search Result 1,091, Processing Time 0.029 seconds

MODELS FOR THE IRAS LOW RESOLUTION SPECTRA OF OH/IR STARS

  • Lee, Sung-Min;Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.291-295
    • /
    • 1998
  • We investigate models for the IRAS LRS)Low Resolution Spectra) of OH/IR stars. OH/IR stars often show the silicate features at 9.7 ${mu}m$ and $18{mu}m$ in the spectra obtained by the IRAS LRS as well as remarkably red values in the IRAS photometric colors such as [60]-[25] and [25]-[12]. We compare the radiative transfer model results with observed spectral energy distributions (SEDs) of the stars including IRAS PSC(Point Source Catalog), IRAS LRS and ground based observational data.

  • PDF

Development and Performance of a Hand-Held CZT Detector for In-Situ Measurements at the Emergency Response

  • Ji, Young-Yong;Chung, Kun Ho;Kim, Chang-Jong;Yoon, Jin;Lee, Wanno;Choi, Geun-Sik;Kang, Mun Ja
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.87-91
    • /
    • 2016
  • Background: A hand-held detector for an emergency response was developed for nuclide identification and to estimate the information of the ambient dose rate in the scene of an accident as well as the radioactivity of the contaminants. Materials and Methods: To achieve this, the most suitable sensor was first selected as a cadmium zinc telluride (CZT) semiconductor and the signal processing unit from a sensor and the signal discrimination and storage unit were successfully manufactured on a printed circuit board. Results and Discussion: The performance of the developed signal processing unit was then evaluated to have an energy resolution of about 14 keV at 662 keV. The system control unit was also designed to operate the CZT detector, monitor the detector, battery, and interface status, and check and transmit the measured results of the ambient dose rate and radioactivity. In addition, a collimator, which can control the inner radius, and the airborne dust sampler, which consists of an air filter and charcoal filter, were developed and mounted to the developed CZT detector for the quick and efficient response of a nuclear accident. Conclusion: The hand-held CZT detector was developed to make the in-situ gamma-ray spectrometry and its performance was checked to have a good energy resolution. In addition, the collimator and the airborne dust sampler were developed and mounted to the developed CZT detector for a quick and efficient response to a nuclear accident.

Classification of Wind Sector in Pohang Region Using Similarity of Time-Series Wind Vectors (시계열 풍속벡터의 유사성을 이용한 포항지역 바람권역 분류)

  • Kim, Hyun-Goo;Kim, Jinsol;Kang, Yong-Heack;Park, Hyeong-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • The local wind systems in the Pohang region were categorized into wind sectors. Still, thorough knowledge of wind resource assessment, wind environment analysis, and atmospheric environmental impact assessment was required since the region has outstanding wind resources, it is located on the path of typhoon, and it has large-scale atmospheric pollution sources. To overcome the resolution limitation of meteorological dataset and problems of categorization criteria of the preceding studies, the high-resolution wind resource map of the Korea Institute of Energy Research was used as time-series meteorological data; the 2-step method of determining the clustering coefficient through hierarchical clustering analysis and subsequently categorizing the wind sectors through non-hierarchical K-means clustering analysis was adopted. The similarity of normalized time-series wind vector was proposed as the Euclidean distance. The meteor-statistical characteristics of the mean vector wind distribution and meteorological variables of each wind sector were compared. The comparison confirmed significant differences among wind sectors according to the terrain elevation, mean wind speed, Weibull shape parameter, etc.

Spatiotemporal Resolution Enhancement of PM10 Concentration Data Using Satellite Image and Sensor Data in Deep Learning (위성 영상과 관측 센서 데이터를 이용한 PM10농도 데이터의 시공간 해상도 향상 딥러닝 모델 설계)

  • Baek, Chang-Sun;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.517-523
    • /
    • 2019
  • PM10 concentration is a spatiotemporal phenomenta and capturing data for such continuous phenomena is a difficult task. This study designed a model that enhances spatiotemporal resolution of PM10 concentration levels using satellite imagery, atmospheric and meteorological sensor data, and multiple deep learning models. The designed deep learning model was trained using input data whose factors may affect concentration of PM10 such as meteorological conditions and land-use. Using this model, PM10 images having 15 minute temporal resolution and 30m×30m spatial resolution were produced with only atmospheric and meteorological data.

Study of evaluation wind resource detailed area with complex terrain using combined MM5/CALMET system (고해상도 바람지도 구축 시스템에 관한 연구)

  • Lee, Hwa-Woon;Kim, Dong-Hyeuk;Kim, Min-Jung;Lee, Soon-Hwan;Park, Soon-Young;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.274-277
    • /
    • 2008
  • To evaluate high-resolution wind resources for local and coastal area with complex terrain was attemped to combine the prognostic MM5 mesoscale model with CALMET diagnostic modeling this study. Firstly, MM5 was simulated for 1km resolution, nested fine domain, with FDDA using QuikSCAT seawinds data was employed to improve initial meteorological fields. Wind field and other meteorological variables from MM5 with all vertical levels used as initial guess field for CALMET. And 5 surface and 1 radio sonde observation data is performed objective analysis whole domain cells. Initial and boundary condition are given by 3 hourly RDAPS data of KMA in prognostic MM5 simulation. Geophysical data was used high-resolution terrain elevation and land cover(30 seconds) data from USGS with MM5 simulation. On the other hand SRTM 90m resolution and EGIS 30m landuse was adopted for CALMET diagnostic simulation. The simulation was performed on whole year for 2007. Vertical wind field a hour from CALMET and latest results of MM5 simulation was comparison with wind profiler(KEOP-2007 campaign) data at HAENAM site.

  • PDF

Alternative Dispute Resolution in Genetic Resources and Traditional Knowledge: Settlement at the World Intellectual Property Arbitration and Mediation Center

  • Kwak, Choong Mok
    • Journal of Arbitration Studies
    • /
    • v.29 no.3
    • /
    • pp.75-97
    • /
    • 2019
  • The growing importance of biological resources as sovereign rights to healthcare, energy, and food has sparked international discussions on Genetic Resources (GRs) and Traditional Knowledge (TK). As the bio-industry continues to grow, research and development utilizing patented biological resources are advocated. Currently, World Intellectual Property Organization (WIPO) is actively discussing GRs and TK, and an effective response to national interest has been sought. Of late, there have been growing disputes over issues like ownership, control, and access and benefit-sharing between indigenous peoples and users of GRs and TK resources. Resolution of disputes concerning GRs and TK are thus becoming critical not only to stakeholders such as the indigenous peoples and corporations, but also to third-party users. Due to the weakness of the current IP and court system however, such disputes are not addressed adequately. This paper will address the use of Alternative Dispute Resolution (ADR), which is an out-of-court dispute resolution system, on conflicting issues regarding GRs and TK. It will consider the WIPO as a forum for ADR and ADR for GRs and TK disputes and it will seek both parties in the dispute to benefit from the use of the ADR process.

Graph neural network based multiple accident diagnosis in nuclear power plants: Data optimization to represent the system configuration

  • Chae, Young Ho;Lee, Chanyoung;Han, Sang Min;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2859-2870
    • /
    • 2022
  • Because nuclear power plants (NPPs) are safety-critical infrastructure, it is essential to increase their safety and minimize risk. To reduce human error and support decision-making by operators, several artificial-intelligence-based diagnosis methods have been proposed. However, because of the nature of data-driven methods, conventional artificial intelligence requires large amount of measurement values to train and achieve enough diagnosis resolution. We propose a graph neural network (GNN) based accident diagnosis algorithm to achieve high diagnosis resolution with limited measurements. The proposed algorithm is trained with both the knowledge about physical correlation between components and measurement values. To validate the proposed methodology has a sufficiently high diagnostic resolution with limited measurement values, the diagnosis of multiple accidents was performed with limited measurement values and also, the performance was compared with convolution neural network (CNN). In case of the experiment that requires low diagnostic resolution, both CNN and GNN showed good results. However, for the tests that requires high diagnostic resolution, GNN greatly outperformed the CNN.

Monte Carlo simulation of spatial resolution of lens-coupled LYSO scintillator for intense pulsed gamma-ray imaging system with large field of view

  • Guoguang Li;Liang Sheng;Baojun Duan;Yang Li;Dongwei Hei;Qingzi Xing
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2650-2658
    • /
    • 2024
  • In this paper, we use a Monte Carlo (MC) simulation based on Geant4 to investigate the influence of four parameters on the spatial resolution of the lens-coupled lutetium yttrium orthosilicate (LYSO) scintillator, including the thickness of the LYSO scintillator, the F-number and minification factor of the lens, and the incident position of the gamma-rays. Simulation results show that when the gamma-rays are incident along the lens axis, the smaller the thickness, the larger the F-number, the larger the minification factor, the higher the spatial resolution, with an isotropic point spread function (PSF). As the incident position of the gamma-rays deviates from the lens axis, the spatial resolution decreases, and the PSF becomes anisotropic. In addition, by analyzing the whole physical process of the lens-coupled LYSO scintillator from gamma-rays to secondary electrons to fluorescence photons, we aim to provide a detailed analysis of the influence of each parameter on the spatial resolution. The results show that the PSF of the secondary electrons energy deposition is almost constant in the simulation, which determines the upper limit of the spatial resolution. Meanwhile, the dispersion process of the fluorescence photons can explain the reason why each parameter affects the spatial resolution.

High-resolution Seismic Study Using Weigh-drop at the Boundary of Pungam Basin (중력추를 이용한 풍암분지 경계 부근에서의 고해상도 반사파 탐사)

  • Kim, Hyoun Gyu;Kim, Ki Young
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.519-526
    • /
    • 1998
  • A high-resolution seismic survey was conducted at the northeastern boundary of Pungam basin, one of the Cretaceous sedimentary basins in Korea. A 100 kg weight was used as an energy source and was found to be better than a sledge hammer in mapping deeper geologic structures. Several processing techniques such as f-k filtering, predictive deconvolution, and time-variant filtering are useful to enhance the signal-to-noise ratio by suppressing unwanted seismic energy. Four seismic units are recognized where many vertical faults are developed. The boundary fault between sedimentary rocks and Precambrian gneiss is identified along with a fracture zone of approximately 30 m wide. Bedding planes of the sedimentary rocks dipping westward are interpreted to be limbs of a syncline or volcanic flow. There faults and tilted bedding planes indicate that the basin had undergone significant tectonic deformation.

  • PDF

Application System for National Wind Map KIER-WindMap$^{TM}$ (국가바람지도 활용시스템 KIER-WindMap$^{TM}$)

  • Kim, Hyun-Goo;Kang, Yong-Hyuk;Lee, Hwa-Woon;Jeong, Woo-Sik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.532-533
    • /
    • 2009
  • The national wind map of South Korea has been established as a core data to support national strategy building and promotion of wind energy dissemination. The national wind map has been made by numerical wind simulation with the spatial resolution of 1 km horizontal, 10m vertical and temporal resolution of 1 hour interval for 5 years period (2003-2007). Therefore, an application system linked with the national wind map named KIER-WindMap$^{TM}$ is being developed to be used by the government, local government, developers and researchers. We introduce the current status of the application system and the future development plans.

  • PDF