• Title/Summary/Keyword: energy recovery

Search Result 1,665, Processing Time 0.034 seconds

Comparative Study on a Single Energy Recovery Circuits for Plasma Display Panels (PDPs)

  • Yi, Kang-Hyun;Choi, Seong-Wook;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.159-162
    • /
    • 2007
  • Comparative study on a low cost sustaining driver with single and dual path energy recovery circuits for plasma display panels (PDPs) is shown in this paper. The cost of PDPs has been still high and about half of the cost has been occupied by driving circuit. A simple sustaining driver is proposed to reduce the cost and size of driving circuit. The proposed driver has small number of devices and reactive components and there are two methods for charging and discharging PDPs such as single and dual path energy recovery circuits. A comparative research on two-types of energy recovery path is practiced to evaluate performance. As a result, the dual energy recovery path circuit has low power consumption, low surge current and high performance. To verify those results, experiment will be shown with 42-inch HD panel.

  • PDF

A Novel Energy Recovery Circuit for AC PDPs with Reduced Sustain Voltage (새로운 유지구동전압 저감형 AC PDP용 에너지 회수회로)

  • Lim, Seung-Bum;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.494-501
    • /
    • 2006
  • In this paper, a novel energy recovery circuit for AC PDPs(Plasma Display Panels) with reduced sustain voltage is proposed to improve the performance of conventional circuits such as TERES(TEchnology of REciprocal Sustainer). In the TERES circuit, the sustain voltage is the half of general sustaining driver for AC PDPs, however, there is no energy recovery circuit. In the proposed circuit, the efficiency is heightened by installing in energy recovery circuit and the loss of switching device is reduced by performing the zero voltage switching or zero current switching. Although the energy recovery circuit is added, the number of active switching elements of the proposed circuit is the same as that of the TERES circuit. The operations of the proposed circuit are analyzed for each mode and its validity is verified by the simulations and experimentation.

Dual Path Magnetic-Coupled AC-PDP Sustain Driver with Low Switching Loss

  • Lee Jun-Young
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.205-213
    • /
    • 2006
  • A cost-effective magnetic-coupled AC-PDP sustain driver with low switching loss is proposed. The transformer reduces current stress in the energy recovery switches which affects circuit cost and reliability. The turns-ratio can be used to adjust the sustain pulse slopes which affect gas discharge uniformity. Dividing the recovery paths prevents abrupt changes in the output capacitance and thereby switching losses of the recovery switches is reduced. In addition, the proposed circuit has a more simple structure because it does not use the recovery path diodes which also afford a large recovery current. By reducing the current stress and device count in the energy recovery circuit, the proposed driver may have decreased circuit cost and improved circuit reliability.

A Study on Thermal Performance of the Heat Recovery Ventilator used Window (창호적용 배열회수 환기유닛의 열성능평가 연구)

  • Jang, Cheol-Yong;Cho, Soo;Sung, Uk-Joo;Lee, Jin-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.129-134
    • /
    • 2008
  • Generally the window of the building is an objective of mining and having a distant view and also for a circulation it will can open and shut because becomes the structure insulation, the meat detailed drawing it does a very difficult portion, it is. And, recently the use of heat recovery ventilator has increased rapidly for improvement of air Quality and energy saving in building. But, the high efficient heat exchange will be more increasable than water vapors which were only occurred residential active. Purpose of this study is measurement of thermal performance about heat-recovery system integrated window. The result of the window thermal resistance is 1.80 $W/m^2K$ by KS F 2278. Air tightness is 5.96 m3/m2h at 4 Pa by KS F 2292.

  • PDF

A Novel Current-fed Energy Recovery Sustaining Driver for Plasma Display Panel (PDP) (PDP를 위한 새로운 전류원 타입의 에너지 회수 및 방전유지 회로)

  • Han S.K.;Moon G.W.;Youn M.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.755-760
    • /
    • 2003
  • A novel current-fed energy-recovery sustaining driver (CFERSD) for a PDP is proposed in this paper. Its main idea is to recover the energy stored in the PDP or to inject the input source energy to the PDP by using the current source built-up in the energy recovery inductor. This method provides zero-voltage-switching (ZVS) of all main power switches, the reduction of EMI, and more improved operational voltage margins with the aid of the discharge current compensation. In addition, since the current flowing through the energy recovery inductor can compensate the plasma discharge current flowing through the conducting power switches, the current stress through all main power switches can be considerably reduced. Furthermore, it features a low conduction loss and fast transient time. Operations, features and design considerations are presented and verified experimentally on a 1020X106mm sized PDP, 50kHz-switching frequency, and sustaining voltage 140V based prototype.

  • PDF

A Novel Current-fed Energy Recovery Sustaining Driver for Plasma Display Panel(PDP)

  • Han, Sang-Kyoo;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • A novel current-fed energy-recovery sustaining driver (CFERSD) for a PDP is proposed in this paper. Its main idea is to recover the energy stored in the PDP or to inject the input source energy to the PDP by using the current source built-up in the energy recovery inductor. This method provides zero-voltage-switching (ZVS) of all main power switches, the reduction of EMI, and more improved operational voltage margins with the aid of the discharge current compensation. In addition, since the current flowing through the energy recovery inductor can compensate the plasma discharge current flowing through the conducting power switches, the current stress through all main power switches can be considerably reduced. Furthermore, it features a low conduction loss and fast transient time. Operations, features and design considerations are presented and verified experimentally on a 1020${\times}$l06mm sized PDP, 50kHz-switching frequency, and sustaining voltage 140V based prototype.

Design of Loss-reduction Mechanisms for Energy Recovery Devices in Reverse-osmosis Desalination systems (역삼투 담수시스템용 에너지회수장치의 손실극복 메커니즘 설계)

  • Ham, Y.B.;Kim, Y.;Noh, J.H.;Shin, S.S.;Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2012
  • Novel mechanisms for Energy Recovery Devices are proposed to diminish the pressure loss in the high-pressure reverse-osmosis system. In the beginning, the state-of-the-art in the design of Energy Recovery Devices is reviewed and the features of each model are investigated. The direct-coupled axial piston pump(APP) and axial piston motor(APM) showed 39% energy recovery at operating pressure of reverse osmosis desalination systems, 60 bar. Meanwhile, the developed PM2D model, in which APM pistons are arranged parallel to those of APP, is more compact and showed higher efficiency in a preliminary test. Loss-reduction mechanisms employing rod piston and double raw valve port are additionally proposed to enhance the efficiency and durability of the device.

An Analytical Method on the Effective Energy Recovery for Heat Exchanger with Heat Pipes (히이트 파이프용 열교환기의 에너지 회수효과 해석 해법)

  • Jang, Yeong-Suk;Seo, Hae-Sung;Lee, Young-Soo;Jun, Chul-Ho
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.31-41
    • /
    • 1989
  • The purpose of this research is to study the utility of prediction program like a F.E.M. analysis for energy recovery of heat exchanger with heat pipe which uses arbitrary groove wick. The program is based on the utility by the experimental and applytical method of the single heat pipe. It is also expanded and applied in the prediction program of the heat exchanger. The results are as follows; 1) The effective thermal conductivity of the groove wick with arbitrary shape is counted by the thermal resistance change. 2) The more the number of rows, the more the effect energy recovery changing by the number of rows, the bigger the free velocity, the smaller the effect of energy recovery. 3) The effect of energy recovery increases according to the value of the rate of mass flow (Me/Mc) and also number of rows. 4) The comparison between calculated and data shows good agreement within 2.5% error, therefore the F.E.M. analysis of the study is useful to predict the performance of heat pipe-heat exchanger.

  • PDF

A Study on Oxygen Consumption during Occupational Activities Performance of Adult Hemiplegia (성인 편마비 환자의 작업수행 중 산소소모량에 대한 연구)

  • Oh, Kyung-Ah;Yoon, Seoung-Ic;Min, Kyung-Ok;Kim, Yoon-Shin;Oh, Duck-Won;Chon, Seung-Chul
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • The purposes of this study are to quantify energy expenditure by measuring oxygen consumption while performing occupational therapy activities most commonly used for adult hemiplegia patients, to recommend a optimal dosage of exercise by comparing energy expenditure according to the recovery stage, and to suggest a precaution in the treatment of patients with cardiac disorders. According to Brunnstrom recovery stages in hand function, subjects were allocated to group I(3rd and 4th Brunnstrom recovery stages) and group II(5th and 6th Brunnstrom recovery stages). Outcome measures included oxygen consumption, energy expenditure rate, and heart rate during each activity and in recovery period after the activity. Occupational activities including sanding activity, putty activity, and skateboard activity were carried out for all patients. In sanding and putty activities, there were significant differences of oxygen consumption and energy expenditure during the activity between groupⅠandⅡ(p<0.05), but there were not significant differences of oxygen consumption, energy expenditure and heart rate in the recovery period(p>0.05). In skateboard activity, there were no significant differences in oxygen consumption, energy expenditure and heart rates between the two groups during the activity and in the recovery period(p>0.05). The findings indicates that cardiovascular demands for basic activities usually peformed for a treatment may be depended on the physical recovery of patients with hemiplegia. Therefore, therapeutic activities for patients should be selected with the great care.

  • PDF

Optimization of operating parameters to remove and recover crude oil from contaminated soil using subcritical water extraction process

  • Taki, Golam;Islam, Mohammad Nazrul;Park, Seong-Jae;Park, Jeong-Hun
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.175-180
    • /
    • 2018
  • Box-Behnken Design (BBD) under response surface methodology (RSM) was implemented to optimization the operating parameters and assess the removal and recovery efficiencies of crude oil from contaminated soil using subcritical water extraction. The effects of temperature, extraction time and water flow rate were explored, and the results indicate that temperature has a great impact on crude oil removal and recovery. The correlation coefficients for oil removal ($R^2=0.74$) and recovery ($R^2=0.98$) suggest that the proposed quadratic model is useful. When setting the target removal and recovery (>99%), BBD-RSM determined the optimum condition to be a temperature of $250^{\circ}C$, extraction time of 120 min, and water flow rate of 1 mL/min. An experiment was carried out to confirm the results, with removal and recovery efficiencies of 99.69% and 87.33%, respectively. This result indicates that BBD is a suitable method to optimize the process variables for crude oil removal and recovery from contaminated soil.