• Title/Summary/Keyword: energy material

Search Result 7,998, Processing Time 0.041 seconds

High School Student Perception of the Relationships between Solar and Visible Radiation and between Terrestrial and Infrared Radiation (태양 복사와 가시광선 복사 및 지구 복사와 적외선 복사의 관계에 대한 고등학생들의 인식)

  • Lee, Jong-Jin;Seo, Eun-Kyoung;Ahn, Yumin
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.312-323
    • /
    • 2022
  • This study began with the hypothesis of whether "solar radiation" and "terrestrial radiation" can be replaced by "visible radiation" and "infrared radiation", respectively. To this end, we investigated the perceptions of high school students who completed the Earth Science I course through a questionnaire to reveal how they perceived each concept. We also analyzed the descriptions and illustrations of textbooks that may have affected their perceptions. All of the students who participated in the questionnaire recognized solar radiation as radiation emitted only in the visible light region. About 35% of the students recognized convection, conduction, and latent heat as energy transfer by radiation in the Earth's heat budget. By analyzing six types of Earth Science I textbooks in the 2015 revised curriculum, we observed that two types introduced the terms "shortwave radiation" and "longwave radiation" but had no explanation for them, while the other two described solar radiation as "radiation mainly in the visible light region" or "radiation in short wavelengths". Regarding solar and terrestrial radiation in the last two types, there was no explanation for the wavelength regions, or ambiguous terms such as "short wavelength" and "long wavelength" were used. In addition, the two textbooks contained some errors in the illustration of the energy budget. Considering that textbooks described solar and terrestrial radiation without defining the exact terms for shortwave and longwave radiation, learners are likely to recognize solar and terrestrial radiation as visible and infrared radiation, respectively. This finding implies that vague statements or errors in textbooks can cause or reproduce students' misconceptions. The discussion in this study is expected to be used as a helpful reference material for teaching and learning processes regarding the Earth's radiation equilibrium and heat budget, and thereby contribute to proposing reasonable description plans for future textbook writing.

Geophysical Evidence Indicating the Presence of Gas Hydrates in a Mud Volcano(MV420) in the Canadian Beaufort Sea (캐나다 보퍼트해 진흙화산(MV420) 내 가스하이드레이트 부존을 지시하는 지구물리학적 증거)

  • Yeonjin Choi;Young-Gyun Kim;Seung-Goo Kang;Young Keun Jin;Jong Kuk Hong;Wookeen Chung;Sung-Ryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Submarine mud volcanos are topographic features that resemble volcanoes, and are formed due to eruptions of fluidized or gasified sediment material. They have gained attention as a source of subsurface heat, sediment, or hydrocarbons supplied to the surface. In the continental slope of the Canadian Beaufort Sea, mud volcano exists at various water depths. The MV420, is an active mud volcano erupting at a water depth of 420 meters, and it has been the subject of extensive study. The Korea Polar Research Institute(KOPRI) collected high-resolution seismic data and heat flow data around the caldera of the mud volcano. By analyzing the multi-channel seismic data, we confirmed the reverse-polarity reflector assumed by a gas hydrate-related bottom simulating reflector(BSR). To further elucidate the relationship between the BSR and gas hydrates, as well as the thermal structure of the mud volcano, a numerical geothermal model was developed based on the steady-state heat equation. Using this model, we estimated the base of the gas hydrate stability zone and found that the BSR depth estimated by multi-channel seismic data and the bottom of the gas hydrate stability zone were in good agreement., This suggests the presence of gas hydrates, and it was determined that the depth of the gas hydrate was likely up to 50 m, depending on the distance from the mud conduit. Thus, this depth estimate slightly differs from previous studies.

Evaluation and Verification of the Attenuation Rate of Lead Sheets by Tube Voltage for Reference to Radiation Shielding Facilities (방사선 방어시설 구축 시 활용 가능한 관전압별 납 시트 차폐율 성능평가 및 실측 검증)

  • Ki-Yoon Lee;Kyung-Hwan Jung;Dong-Hee Han;Jang-Oh Kim;Man-Seok Han;Jong-Won Gil;Cheol-Ha Baek
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.489-495
    • /
    • 2023
  • Radiation shielding facilities are constructed in locations where diagnostic radiation generators are installed, with the aim of preventing exposure for patients and radiation workers. The purpose of this study is seek to compare and validate the trend of attenuation thickness of lead, the primary material in these radiation shielding facilities, at different maximum tube voltages by Monte Carlo simulations and measurement. We employed the Monte Carlo N-Particle 6 simulation code. Within this simulation, we set a lead shielding arrangement, where the distance between the source and the lead sheet was set at 100 cm and the field of view was set at 10 × 10 cm2. Additionally, we varied the tube voltages to encompass 80, 100, 120, and 140 kVp. We calculated energy spectra for each respective tube voltage and applied them in the simulations. Lead thicknesses corresponding to attenuation rates of 50, 70, 90, and 95% were determined for tube voltages of 80, 100, 120, and 140 kVp. For 80 kVp, the calculated thicknesses for these attenuation rates were 0.03, 0.08, 0.21, and 0.33 mm, respectively. For 100 kVp, the values were 0.05, 0.12, 0.30, and 0.50 mm. Similarly, for 120 kVp, they were 0.06, 0.14, 0.38, and 0.56 mm. Lastly, at 140 kVp, the corresponding thicknesses were 0.08, 0.16, 0.42, and 0.61 mm. Measurements were conducted to validate the calculated lead thicknesses. The radiation generator employed was the GE Healthcare Discovery XR 656, and the dosimeter used was the IBA MagicMax. The experimental results showed that at 80 kVp, the attenuation rates for different thicknesses were 43.56, 70.33, 89.85, and 93.05%, respectively. Similarly, at 100 kVp, the rates were 52.49, 72.26, 86.31, and 92.17%. For 120 kVp, the attenuation rates were 48.26, 71.18, 87.30, and 91.56%. Lastly, at 140 kVp, they were measured 50.45, 68.75, 89.95, and 91.65%. Upon comparing the simulation and experimental results, it was confirmed that the differences between the two values were within an average of approximately 3%. These research findings serve to validate the reliability of Monte Carlo simulations and could be employed as fundamental data for future radiation shielding facility construction.

Analysis of the 2015 Revised and 2022 Revised Elementary School Science Achievement Standards Using the TIMSS 2023 Scientific Cognitive Domain Analysis Framework (TIMSS 2023 과학 인지 영역 분석틀을 활용한 2015 개정 및 2022 개정 초등 과학과 성취 기준 분석)

  • Sungchan Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.3
    • /
    • pp.249-262
    • /
    • 2024
  • The purpose of this study is to analyze the achievement standards of the 2015 revision and 2022 revision of the science curriculum using the TIMSS 2023 science cognitive domain analysis framework. The subject of the study is the achievement standards for all elementary school areas in the 2015 and 2022 revised science curriculum. Three field teachers and one elementary science education expert who majored in elementary science education participated in the research analysis. The results of this study are as follows. First, in the 2022 revised movement and energy field, the ratio of the 'knowing' area was about 16% higher than the 2015 revision, and the ratio of the 'reasoning' area also increased by about 5.8%. Second, in the material field, the proportion of TIMSS 2023 cognitive domains was in the order of 'knowing', 'applying', and 'reasoning' regardless of grade group and curriculum revision period. Third, in the field of life sciences, the proportion of TIMSS 2023 cognitive domains differed depending on grade group and curriculum revision period. Fourth, in the Earth and Space field of the 2022 revision, similar to the other three fields, the proportion of the 'Knowing' field increased and while the 'Applying' field decreased. However, in the 2022 revision, the 'reasoning' area in all three other fields increased, but decreased only in the earth and space fields. Fifth, the 2015 revised integrated unit and the 2022 revised science and society field only covered the elements of 'recognizing' and 'presenting examples' in the 'knowing' area, 'making relationships' and 'explaining' in the 'applying' area and 'Synthesize' in the 'reasoning' area. In the 2022 revised elementary school science field, the proportion of the 'knowing' section was 52.5%, the proportion of the 'applying' section was 33.8%, and the proportion of the 'reasoning' section was 13.7%. In conclusion, in the 2022 revised elementary science achievement standards, the ratio of the 'applying' and 'reasoning' areas was low because the reliance on the 'knowing' area was too high.

The Hardness Water Production By RO/NF/ED Linking Process From Deep Seawater (RO/NF/ED 연계 공정에 의한 고경도 담수 제조)

  • Moon, Deok-Soo;Kim, Kwang Soo;Gi, Ho;Choi, Mi Yeon;Jung, Hyun Ji;Kim, Hyun Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.227-238
    • /
    • 2013
  • The purpose of this study is to develop a process technology to produce high hardness drinking water which meet drinking water standard, remaining useful minerals like magnesium and calcium in the seawater desalination process while removing the sulfate ions and chloride ions. Seawater have been separated the concentrated seawater and desalted seawater by passing on Reverse Osmosis membrane (RO). Using Nano-filtration membrane (NF), We were prepared primary mineral concentrated water that sodium chloride were not removed. By the operation of electro-dialysis (ED) having ion exchange membrane, we were prepared concentrated mineral water (Mineral enriched desalted water) which the sodium chloride is removed. We have produced the high hardness water to meet the drinking water quality standards by diluting the mineral enriched desalted water with deionized water by RO. Reverse osmosis membranes (RO) can separate dissolved material and freshwater from seawater (deep seawater). The desalination water throughout the second reverse osmosis membrane was completely removed dissolved substances, which dissolved components was removed more than 99.9%, its the hardness concentration was 1 mg/L or less and its chloride concentration was 2.3 mg/L. Since the nano-filtration membrane pore size is $10^{-9}$ m, 50% of magnesium ions and calcium ions can not pass through the nano-filtration membrane, while more than 95% of sodium ions and chloride ions can pass through NF membrane. Nano-filtration membrane could be separated salt components like sodium ion and chloride ions and hardness ingredients like magnesium ions and calcium ions, but their separation was not perfect. Electric dialysis membrane system can be separated single charged ions (like sodium and chloride ions) and double charged ions (like magnesium and calcium ions) depending on its electrical conductivity. Above electrical conductivity 20mS/cm, hardness components (like magnesium and calcium ions) did not removed, on the other hand salt ingredients like sodium and chloride ions was removed continuously. Thus, we were able to concentrate hardness components (like magnesium and calcium ions) using nano-filtration membrane, also could be separated salts ingredients from the hardness concentration water using electrical dialysis membrane system. Finally, we were able to produce a highly concentrated mineral water removed chloride ions, which hardness concentration was 12,600 mg/L and chloride concentration was 2,446 mg/L. By diluting 10 times these high mineral water with secondary RO (Reverse Osmosis) desalination water, we could produce high mineral water suitable for drinking water standards, which chloride concentration was 244 mg/L at the same time hardness concentration 1,260 mg/L. Using the linked process with reverse osmosis (RO)/nano filteration (NF)/electric dialysis (ED), it could be concentrated hardness components like magnesium ions and calcium ions while at the same time removing salt ingredients like chloride ions and sodium ion without heating seawater. Thus, using only membrane as RO, NF and ED without heating seawater, it was possible to produce drinking water containing high hardness suitable for drinking water standard while reducing the energy required to evaporation.

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

Air Cavity Effects on the Absorbed Dose for 4-, 6- and 10-MV X-ray Beams : Larynx Model (4-, 6-, 10-MV X-선원에서 공기동이 흡수선량에 미치는 효과 : 후두모형)

  • Kim Chang-Seon;Yang Dae-Sik;Kim Chul-Yong;Choi Myung-Sun
    • Radiation Oncology Journal
    • /
    • v.15 no.4
    • /
    • pp.393-402
    • /
    • 1997
  • Purpose : When an x-ray beam of small field size is irradiated to target area containing an air cavity, such as larynx, the underdosing effect is observed in the region near the interfaces of air and soft tissue. With a larynx model, air cavity embedded in tissue-equivalent material, this study is intonded for examining Parameters, such as beam quality, field size, and cavity size, to affect the dose distribution near the air cavity. Materials and Methods : Three x-rar beams, 4-, 6- and 10-MV, were employed to Perform a measurement using a 2cm $(width){\times}L$ (length in cm, one side of x-ray field used 2cm (height) air cavity in the simulated larynx. A thin window parallel-plate chamber connected to an electrometer was used for a dosimetry system. A ratio of the dose at various distances from the cavity-tissue interface to the dose at the same points in a homogeneous Phantom (ebservedlexpected ratio, O/E) normalized buildup curves, and ratio of distal surface dose to dose at the maximum buildup depth were examined for various field sizes. Measurement for cavity size effect was performed by varying the height (Z) of the air cavity with the width kept constant for several field sizes. Results : No underdosing effect for 4-MV beam for fields larger than $5cm\times5cm$ was found For both 6- and 10-MV beams, the underdosing portion of the larynx at the distal surface was seen to occur for small fields, $4cm\times4cm\;and\;5cm\times5cm$. The underdosed tissue was increased in its volume with beam energy even for similar surface doses. The relative distal surface dose to maximum dose was changed to 0.99 from 0.95, 0.92, and 0.91 for 4-, 6-, and 10-MV, respectively, with increasing field size, $4cm\times4cm\;to\;8cm\times8cm$, For 6- and 10-MV beams, the dose at the surface of the cavity is measured less than the predicted by about two and three percent. respectively. but decrease was found for 4-MV beam for $5cm\times5cm$ field. For the $4cm\timesL\timesZ$ (height in cm). varying depth from 0.0 to 4.8cm, cavity, O/E> 1.0 was observed regardless of the cavity size for any field larger than about $8cm\times8cm$. Conclusion : The magnitude of underdosing depends on beam energy, field size. and cavity size for the larynx model. Based on the result of the study. caution must be used when a small field of a high quality x-ray beam is irradiated to regions including air cavities. and especially the region where the tumor extends to the surface. Low quality beam. such as. 4-MV x-ray, and larger fields can be used preferably to reduce the risk of underdosing, local failure. In the case of high quality beams such as 6- and 10-MV x-rays, however. an additional boost field is recommended to add for the compensation of the underdosing region when a typically used treatment field. $8cm\times8cm$, is employed.

  • PDF

Study on the Limitation of AVO Responses Shown in the Seismic Data from East-sea Gas Reservoir (동해 가스전 탄성파 자료에서 나타나는 AVO 반응의 한계점에 대한 고찰)

  • Shin, Seung-Il;Byun, Joong-Moo;Choi, Hyung-Wook;Kim, Kun-Deuk;Ko, Seung-Won;Seo, Young-Tak;Cha, Young-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.242-249
    • /
    • 2008
  • Recently, AVO analysis has been widely used in oil exploration with seismic subsurface section as a direct indicator of the existence of the gas. In the case of the deep reservoirs like the gas reservoirs in the East-sea, it is often difficult to observe AVO responses in CMP gathers even though the bright spots are shown in the stacked section. Because the reservoir becomes more consolidated as its depth deepens, P-wave velocity does not decrease significantly when the pore fluid is replaced by the gas. Thus the difference in Poisson's ratio, which is a key factor for AVO response, between the reservoir and the layer above it does not increase significantly. In this study, we analyzed the effects of Poisson's ratio difference on AVO response with a variety of Poisson's ratios for the upper and lower layers. The results show that, as the difference in Poisson's ratio between the upper and lower layers decreases, the change in the reflection amplitude with incidence angle decreases and AVO responses become insignificant. To consider the limitation of AVO responses shown in the gas reservoir in East-sea, the velocity model was made by simulation Gorae V structure with seismic data and well logs. The results of comparing AVO responses observed from the synthetic data with theoretical AVO responses calculated by using material properties show that the amount of the change in reflection amplitude with increasing incident angle is very small when the difference in Poisson's ratio between the upper and lower layers is small. In addition, the characteristics of AVO responses were concealed by noise or amplitude distortion arisen during preprocessing. To overcome such limitations of AVO analysis of the data from deep reservoirs, we need to acquire precisely reflection amplltudes In data acquisition stage and use processing tools which preserve reflection amplitude in data processing stage.

A Study of Characteristics of MicroLion Liquid Ionization Chamber for 6 MV Photon Beam (6 MV 광자빔에 대한 MicroLion 액체이온함의 특성 연구)

  • Choi, Sang-Hyoun;Huh, Hyun-Do;Kim, Seong-Hoon;Ji, Young-Hoon;Kim, Kum-Bae;Kim, Woo-Chul;Kim, Hun-Jeong;Shin, Dong-Oh;Kim, Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.216-223
    • /
    • 2011
  • Recently PTW developed a MicroLion liquid ionization chamber which is water_equivalent and has a small sensitive volume of $0.002cm^3$. The aim of this work is to investigate such dosimetric characteristics as dose linearity, dose rate dependency, spatial resolution, and output factors of the chamber for the external radiotherapy photon beam. The results were compared to those of Semiflex chamber, Pinpoint chamber and Diode chamber with the sensitive volumes of $0.125cm^3$, $0.03cm^3$ and $0.0025cm^3$, respectively and evaluated to be suitable for small fields. This study was performed in the 6MV photon energy from a Varian 2300 C/D linac accelerator and the MP3 water phantom (PTW, Freiburg) was used. Penumbras in the varios field sizes ranged from $0.5{\times}0.5cm^2$ to $10{\times}10cm^2$ were used to evaluate the spatial resolution. Output factors were measured in the field sizes of $0.5{\times}0.5$ to $40{\times}40cm^2$. Readings of the chamber was linearly proportional to dose. Dose rate dependency was measured from 100 MU/min to 600 MU/min, showed a maximum difference of 5.0%, and outputs decreased with dose rates. The spatial resolutions determined with comparing profiles for the field sizes of $0.5{\times}0.5cm^2$ to $10{\times}10cm^2$ agreed between every detector except the Semiflex chamber to within 2%. Outputs of detectors were compared to that of Semiflex chamber and showed good agreements within 2% for every chamber. This study shows that MicroLion chamber characterized by a high signal-to-noise ratio and water equivalence could be suitable for the small field dosimetry.

Kinetics of Nitric Oxide Reduction with Alkali Metal and Alkali Earth Metal Impregnated Bamboo Activated Carbon (알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.671-677
    • /
    • 2016
  • The impregnated alkali metal (Na, K), and the alkali earth metal (Ca, Mg) activated carbons were produced from the bamboo activated carbon by soaking method of alkali metals and alkali earth metals solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. The specific surface area and the pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of the used activated carbon. Carbon-NO reactions were carried out in the nonisothermal condition (the reaction temperature $20{\sim}850^{\circ}C$, NO 1 kPa) and the isothermal condition (the reaction temperature 600, 650, 700, 750, 800, $850^{\circ}C$, NO 0.1~1.8 kPa). As results, the specific volume and the surface area of the impregnated alkali bamboo activated carbons were decreased with increasing amounts of the alkali. In the NO reaction, the reaction rate of the impregnated alkali bamboo activated carbons was promoted to compare with that of the bamboo activated carbon [BA] in the order of BA(Ca)> BA(Na)> BA(K)> BA(Mg) > BA. Measured the reaction orders of NO concentration and the activation energy were 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30 [BA(Mg)], and 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol [BA(Mg)], respectively.