• Title/Summary/Keyword: energy input

Search Result 2,493, Processing Time 0.032 seconds

Seismic Energy Demand of Structures Depending on Ground Motion Characteristics and Structural Properties (지반 운동과 구조물 특성에 따른 구조물의 에너지 요구량)

  • Choi, Hyun-Hoon;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.59-68
    • /
    • 2005
  • The energy-based seismic design method Is more rational in comparison with current seismic design code in that it can directly account for the effects of cumulative damage by earthquake and hysteretic behavior of the structure. However there are research results that don't reach a consensus depending on the ground motion characteristic and structural properties. For that reason in this study the influences of ground motion characteristics and structural properties on energy demands were evaluated using 100 earthquake ground motions recorded in different soil conditions, and the results obtained were compared with those of previous works. Results show that ductility ratios and sue conditions have significant influence on input energy. The results show that the ratio of hysteretic to input energy is considerably influenced by the ductility ratio, damping ratio, and strong motion duration, while the effect of site condition is insignificant.

The Economic Effects of Integrated-Energy Business : An Input-Output Analysis (집단에너지산업의 국민경제적 파급효과 분석)

  • Han, Kun-Taik;Kim, Hye-Min;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Korean government has initiated integrated-energy business (IEB) in Mokdong for energy conservation in 1983. Since then, IEB has been steadily expanding. This paper attempts to apply input-output(I-O) analysis to examine the economic effects of IEB. A static I-O framework is employed, focusing on three topics in its application: the impact of the investment of IEB on the production of other sectors and the inter-industry linkage effect; supply shortage effects of the IEB ; and the impact of the rise in IEB rate on prices of other products. The paper pays closer attention to IEB sector by taking the sector as exogenous and then investigating its economic impacts. The results can be widely utilized in decision-making about IEB policy.

Simulation study on one-step ahead control of a photovoltaic energy storage system

  • Sugisaka, Masanori;Kuroiwa, Kenzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.741-746
    • /
    • 1987
  • Solar cell which transforms the light energy into the electric energy from Sun comes into prominence as a new energy for next generation. However, it is difficult to obtain the stable output voltage and current from the solar cell due to the uncertainty in weather conditions, etc, In the present paper, two types of control laws are considered for regulating the input voltage in a photovoltaic energy storage system such as the system with the super conducting magnetic energy storage. (1) Oone is the design of optimal controller. (2) The other is that of weighted minimum prediction error controllers (weighted one-step ahead controllers). Simulation study for the above controllers is performed to see how they work and to get preliminary knowledge in the regulation of the input voltage to the experimental photovoltaic energy storage system.

  • PDF

Comparison of Energy Demand in Multi-Story Structures and Equivalent SDOF Systems (다층 구조물과 등가 단자유도계의 에너지 요구량 비교)

  • 최현훈;원영섭;김진구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.19-26
    • /
    • 2003
  • In energy-based design, the structures are generally transformed into equivalent SDOF systems to obtain the input and the dissipated energy. In this study the energy demands in multi-story structures were compared with that of equivalent single degree of freedom systems to validate the transformation method. Three-, eight-, and twenty-story steel moment-resisting frames and buckling restrained braced frames are compared with those of equivalent single degree of freedom systems. Sixty earthquake ground motions recorded in different soil conditions were used to compute the input and hysteretic energy demands in model structures. According to the analysis results, in 3 and 8-story structures the hysteretic energy demands computed in the equivalent SDOF structures are compatible with those computed in the original MDOF structures, while in the 20-story structures the transformed equivalent structures underestimated the hysteretic energy demands.

  • PDF

Optimization of Operational and Constitutional Geometric Parameters for Thermoaoustic Energy Output

  • Oh, Seung Jin;Shin, Sang Woong;Chen, Kuan;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.28-38
    • /
    • 2014
  • The effects of geometric parameters (stack position, stack length, resonator tube length) and varying input power over acoustic energy output were investigated. The acoustic laser kit (Garret 2000) was used for the construction of TA lasers. A series of sound pressure level measurements in different orientations did not differ significantly confirming that the sound wave generated could be assumed as a spherical wave. An increase in acoustic pressure was recorded with respective increase in input power, stack and resonator tube lengths owing to their relative influence over heat transfer rate and critical temperature gradient across the stack.

An Energy Budget Algorithm for a Snowpack-Snowmelt Calculation (스노우팩-융설 계산을 위한 에너지수지 알고리즘)

  • Lee, Jeong-Hoon;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.82-89
    • /
    • 2011
  • Understanding snowmelt movement to the watershed is crucial for both climate change and hydrological studies because the snowmelt is a significant component of groundwater and surface runoff in temperature area. In this work, a new energy balance budget algorithm has been developed for melting snow from a snowpack at the Central Sierra Snow Laboratory (CSSL) in California, US. Using two sets of experiments, artificial rain-on-snow experiments and observations of diel variations, carried out in the winter of 2002 and 2003, we investigate how to calculate the amount of snowmelt from the snowpack using radiation energy and air temperature. To address the effect of air temperature, we calculate the integrated daily solar radiation energy input, and the integrated discharge of snowmelt under the snowpack and the energy required to generate such an amount of meltwater. The difference between the two is the excess (or deficit) energy input and we compare this energy to the average daily temperature. The resulting empirical relationship is used to calculate the instantaneous snowmelt rate in the model used by Lee et al. (2008a; 2010), in addition to the net-short radiation. If for a given 10 minute interval, the energy obtained by the melt calculation is negative, then no melt is generated. The input energy from the sun is considered to be used to increase the temperature of the snowpack. Positive energy is used for melting snow for the 10-minute interval. Using this energy budget algorithm, we optimize the intrinsic permeability of the snowpack for the two sets of experiments using one-dimensional water percolation model, which are $52.5{\times}10^{-10}m^2$ and $75{\times}10^{-10}m^2$ for the artificial rain-on-snow experiments and observations of diel variation, respectively.

Operation Analysis of Resonant DC/DC Converter able to Harvest Thermoelectric Energy (열전에너지 수확이 가능한 공진형 DC/DC 컨버터의 동작 해석)

  • Kim, Hyeok-Jin;Chung, Gyo-Bum;Cho, Kwan-Youl;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.150-158
    • /
    • 2010
  • The operational characteristics of a resonant DC/DC converter, which can harvest thermoelectric energy, is analyzed, depending on the relative magnitudes of the input voltage and the load voltage. The resonant converter consists of LC resonant circuit connected to DC input source and a resonant pulse converter in which the input energy is transferred to the load as the resonant capacitor voltage is peak. The resonant capacitor doubles the input voltage by the resonance phenomenon. By the relative magnitude between the input voltage and the output voltage, the resonant DC/DC converter operates in three different modes. For boost mode, the peak voltage of the resonant capacitor is smaller than the load voltage. For hybrid mode, the peak voltage of the resonant capacitor is bigger than the load voltage and every switching period has both the boost mode and the direct mode. For the direct mode, the input voltage is bigger than the load voltage and the converter transfers directly the input energy to the load without the switching operation. Operation principles and the feasibility of the converter for the thermoelectric energy harvesting are verified with PSPICE simulation and experiment.

A Study on Development of Simplified Thermal Load Calculation Program for Building Energy Analysis (건물에너지 해석을 위한 간이열부하 해석프로그램 개발에 관한 연구)

  • Kang, Yoon-Suk;Um, Mi-Eun;Ihm, Pyeong-Chan;Park, Jong-Il
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.72-77
    • /
    • 2008
  • About 25% of overall energy use of Korea had been spent in buildings. It is crucial to acknowledge the importance of saving energy in buildings. In order to save energy, it is important to predict accurate energy use. There are numerous energy simulation program that predicts both energy load and energy use. The problem of the energy simulation program is that it holds too many input variables, and it needs experts to model a building. So, our purpose of this study is to develop the simplified thermal load calculation program for building energy analysis which eliminates coordinates of building components instead of using full coordinates by using DOE2. Since the engine of the program is DOE2, we verified the validity of S-DOE by comparing peak heating & cooling load results and annual energy use results. The results shows that there are little difference between VisualDOE and S-DOE. Also it showed that S-DOE took less time to input variables than VisualDOE. These results reveals that the application of S-DOE is possible to accurately predict energy load and energy use of the building and still have strong point that it takes less time to analyse building energy.

  • PDF

The effect of Heat input and PWHT on the microstructure and mechanical properties of HSB600 steel weldments (HSB600강 GMA 용접부에서 입열량과 용접후 열처리가 미세조직과 기계적 특성에 미치는 영향)

  • Koh, Jin-Hyun;Kim, Nam-Hoon;Jang, Bok-Su;Ju, Dong-Hwi;Lim, Young-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5405-5411
    • /
    • 2011
  • The effects of heat input (1.5~3.6 kJ/mm) and post weld heat treatment (PWHT, $600^{\circ}C$, 40hr.) on the TMCP HSB600 steel weldments made by GMAW process were investigated. The tensile strengths and hardness of as-welded specimens were decreased as heat input increased, but CVN (Charpy V-Notch) impact energy did not show any differences. The fine-grained acicular ferrite was mainly formed in the low heat input while polygonal and side plate ferrites were dominated in the high heat inputs. Meanwhile, tensile strength and hardness of PWHT weldments were decreased due to the coarsening and globular of microstructure as well as reduction of residual stresses.

Bilateral Controller for Time-varying Communication Delay: Time Domain Passivity Approach (시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기 : 시간영역 수동성 기법)

  • Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1099-1105
    • /
    • 2007
  • In this paper, modified two-port time-domain passivity approach is proposed for stable bilateral control of teleoperators under time-varying communication delay. We separate input and output energy at each port of a bilateral controller, and propose a sufficient condition for satisfying the passivity of the bilateral controller including time-delay. Output energy at the master port should be less than the transmitted input energy from the slave port with time-delay, and output energy at the slave port should be less than the transmitted input energy from the master port with time-delay. For satisfying above two conditions, two passivity controllers are attached at each port of the bilateral controller. A packet reflector with wireless internet connection is used to introduce serious time-varying communication delay of teleoperators. Average amount of time-delay was about 190(msec) for round trip, and varying between 175(msec) and 275(msec). Moreover some data packet was lost during the communication due to UDP data communication. Even under the serious time-varying delay and packet loss communication condition, the proposed approach can achieve stable teleoperation in free motion and hard contact as well.