• 제목/요약/키워드: energy form

검색결과 2,761건 처리시간 0.035초

크리피드연삭에서 공작물로 유입되는 에너지 비율 (Energy Partition to Workpiece in Creep feed Grinding)

  • 김남경;박호성;홍순익;송지복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.799-804
    • /
    • 1997
  • This paper is concerned with the heat flux distribution and energy partition for creep-feed grinding. Form measurements of transient grinding temperatures in the workpiece sub-surface using an embeded thermocouple, the overall energy partition to the workpiece was estimated form moving heat source theory for a triangular heat flux distribution as 3.0% for down grinding and 4.5% for up grinding. The higher energy partition for up grinding can be attributed to the need to satisfy thermal compatibility at the grinding zone. The influence of cooling outside the grinding zone can be analytically taken into account by specifying convective heat transfer coefficients on the workpiecs surface h /sab a/ heat source (grinding zone) and h /sab b/ behind the heat source. The smaller energy patition together with slightly lower grinding power favors down grinding over up grinding.

  • PDF

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.

The investigation of Magnetohydrodynamic nanofluid flow with Arrhenius energy activation

  • Sharif, Humaira;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Hussain, Muzamal;Mahmoud, S.R.;Al-Basyouni, K.S.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제10권5호
    • /
    • pp.437-448
    • /
    • 2021
  • In this article, an analytically and numerically 3D nanoliquid flow by a porous rotatable disk is presented in the presence of gyrotactic microorganisms. The mathematical model in the form of partial differential system is transmuted into dimensionless form by utilizing the appropriate transformation. The homotopy analysis approach is applied to attain the analytic solution of the problem. The effect of promising parameters on velocity distribution, temperature profile, nanoparticles volume fraction and motile microorganism distribution field are evaluated through graphs and in tabular form. The existence of Brownian motion and thermophoresis impacts are more proficient for heat transfer enhancement. Further the unique features like heat absorption/generation and energy activation are also examined for the present flow problem. The obtained results are compared with the earliear investigation to check the accuracy of present model.

Operation Profile을 고려한 5,000TEU급 컨테이너선 선형개발 (Hull Form Development of 5,000TEU Class Container Carrier considering the Operation Profile)

  • 김진우;박성우;이평국;이왕수;선재욱
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2017년도 특별논문집
    • /
    • pp.59-62
    • /
    • 2017
  • Recently oil price has got lower, but energy efficiency has been considered as an important factor to minimize ship operational costs and reduce greenhouse gas emissions. For the reason, it is necessary that energy efficiency improvement for hull form design and operational performance reflect an understanding of the vessel's operational profile. Throughout the life of the vessel, this can lead to important economies of fuel, even if, in some cases, a small penalty can be taken for design condition. In the present paper, hull form was developed for 5,000TEU class container carrier at given operation profile. As a CFD result at several design point, optimized hull form has improved resistance performance in comparison with the basis hull form. To reducing the viscosity and the wave resistance at multi draft and multi speed, the hull form was investigated for Cp-curve, frame and local shape. Numerical study has been performed using WAVIS & Star-CCM+ and verified by model test in the towing tank.

  • PDF

지진 재해도의 닫힌 근사식 제안에 관한 연구 (A Study to Propose Closed-form Approximations of Seismic Hazard)

  • 곽신영;함대기
    • 한국지진공학회논문집
    • /
    • 제22권4호
    • /
    • pp.245-251
    • /
    • 2018
  • In this paper, we address some issues in existing seismic hazard closed-form equations and present a novel seismic hazard equation form to overcome these issues. The presented equation form is based on higher-order polynomials, which can well describe the seismic hazard information with relatively high non-linearity. The accuracy of the proposed form is illustrated not only in the seismic hazard data itself but also in estimating the annual probability of failure (APF) of the structural systems. For this purpose, the information on seismic hazard is used in representative areas of the United States (West : Los Angeles, Central : Memphis and Kansas, East : Charleston). Examples regarding the APF estimation are the analyses of existing platform structure and nuclear power plant problems. As a result of the numerical example analyses, it is confirmed that the higher-order-polynomial-based hazard form presented in this paper could predict the APF values of the two example structure systems as well as the given seismic hazard data relatively accurately compared with the existing closed-form hazard equations. Therefore, in the future, it is expected that we can derive a new improved APF function by combining the proposed hazard formula with the existing fragility equation.