• Title/Summary/Keyword: energy equations

Search Result 2,009, Processing Time 0.03 seconds

Measurement of Turbulent Wake behind a Self-Propelled SUBOFF Model and Derivation of Experimental Equations (자항하는 SUBOFF 모형 난류항적 계측 및 실험식 유도)

  • Shin, Myung-Soo;Moon, Il-Sung;Nah, Young-In;Park, Jong-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.364-371
    • /
    • 2011
  • This paper presents experimental results and derived experimental equations to investigate the turbulent wake characteristics generated by the self-propelled SUBOFF submarine model. A self-propelled SUBOFF model which was assumed as an axial-symmetric body was used to create wake, and a thin strut was mounted on the topside of the model. The experiments were conducted in a circulating water channel(CWC), and the hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the time-averaged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, this paper presents derived experimental equations, which is extended result to the reference [1]. These experimental equations show well the general characteristics of the turbulent wake behind the self-propelled submerged body.

General Derivation of Two-Fluid Model (2상 유동 모델의 일반적인 유도)

  • Hee Cheon No
    • Nuclear Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 1984
  • General time-volume averaged conservation equations and jump conditions for two-phase flows are derived here. The time-averaged equations for a single phase region in two-phase flow are obtained from local instant balance equations by a technique often used for single phase turbulent flow equations. The results obtained by integrating the time averaged equations over a flow volume are spatially averaged twice; first, they are averaged over a single phase region of the k-th phase and then averaged over the total volume of the k-th phase, in a flow volume. The mass, momentum, and energy conservation equations are obtained from the general time-volume averaged equations. The advantages of the present model are explained by comparing it with Ishii's model (1) and Banerjee's model (2). Finally, the assumptions and approximate terms of the equations of the THERMIT-6S are clarified.

  • PDF

Thermodynamic Analysis on the Feasibility of Turbo Expander Power Generation Using Natural Gas Waste Pressure (천연가스 폐압발전 활성화의 당위성에 대한 열역학적 분석)

  • Ha, Jong Man;Hong, Seongho;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.136-142
    • /
    • 2012
  • Thermodynamic equations for the electric power and temperature in a turbo expander generator (TEG) using pressure energy in a natural gas line are derived. From the equations, it was shown that dominant factor is not the pressure difference but the pressure ratio. The high energy level in the inlet of TEG can be made from nearly no expense of electric energy input, which means TEG can be treated as one of newly available clean energy source. If a post heating method is chosen to heat up expanded natural gas, the usage of cold energy is possible without a refrigeration cycle. The combined TEG and refrigeration system enhances economic benefit much more.

Hysteretic behavior studies of self-centering energy dissipation bracing system

  • Xu, Longhe;Fan, Xiaowei;Lu, Dengcheng;Li, Zhongxian
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1205-1219
    • /
    • 2016
  • This paper presents a new type of pre-pressed spring self-centering energy dissipation (PS-SCED) bracing system that combines friction mechanisms between the inner and outer tube members to provide the energy dissipation with the pre-pressed combination disc springs installed on both ends of the brace to provide the self-centering capability. The mechanics and the equations governing the design and hysteretic responses of the bracing system are outlined, and a series of validation tests of components comprising the self-centering mechanism of combination disc springs, the friction energy dissipation mechanism, and a large scale PS-SCED bracing specimen were conducted due to the low cyclic reversed loadings. Experimental results demonstrate that the proposed bracing system performs as predicted by the equations governing its mechanical behaviors, which exhibits a stable and repeatable flag-shaped hysteretic response with excellent self-centering capability and appreciable energy dissipation, and large ultimate bearing and deformation capacities. Results also show that almost no residual deformation occurs when the friction force is less than the initial pre-pressed force of disc springs.

Hamilton제s Principle for the Free Surface Waves of Finite Depth (유한수심 자유표면파 문제에 적용된 해밀톤원리)

  • 김도영
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.96-104
    • /
    • 1996
  • Hamilton's principle is used to derive Euler-Lagrange equations for free surface flow problems of incompressible ideal fluid. The velocity field is chosen to satisfy the continuity equation a priori. This approach results in a hierarchial set of governing equations consist of two evolution equations with respect to two canonical variables and corresponding boundary value problems. The free surface elevation and the Lagrange's multiplier are the canonical variables in Hamilton's sense. This Lagrange's multiplier is a velocity potential defined on the free surface. Energy is conserved as a consequence of the Hamiltonian structure. These equations can be applied to waves in water of finite depth including generalization of Hamilton's equations given by Miles and Salmon.

  • PDF

Parametric Study on the $LiBr-H_{2}O$ Absorption Process on Horizontal Tubes Using Wavier-Stokes Equations (Navier-Stokes 방정식을 사용한 수평원관상의 $LiBr-H_{2}O$ 흡수특성에 대한 연구)

  • Min J. K.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.213-218
    • /
    • 1999
  • The $LiBr-H_{2}O$ absorption process on a horizontal tube has been analyzed using the numerical method which incorporates the fully elliptic Navier-Stokes equations for the momentum equations, the energy and mass-diffusion equations. On a staggered grid, the SIMPLER algorithm with the QUICK scheme is used to solve these equations along with the MAC method for the free surface tracking. With the assumption that the absorbent is linear, calculations have been made for various inlet temperature and flow-rate conditions. The detailed results of the parametric study, such as the temperature, concentration, absorption mass flux and wall heat flux distributions are presented. The self-sustained feature of the absorption process is clearly elaborated. The analyses have also been carried out for multiple tube arrangement and the results show that the absorption rate converges after a few tube rows.

  • PDF

COLLOCATION APPROXIMATIONS FOR INTEGRO-DIFFERENTIAL EQUATIONS

  • Choi, Moon-Ja
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.35-51
    • /
    • 1993
  • This paper concerns collocation methods for integro-differential equations in which memory kernels have a singularity at t = 0. There has been extensive research in recent years on Volterra integral and integro-differential equations for physical systems with memory effects in which the stabilty and asymtotic stability of solutionsl have been the main interest. We will study a class of hereditary equations with singular kernels which interpolate between well known model equations as the order of singularity varies. We are also concerned with the smoothing effect of singular kernels, but we use energy methods and our results involve fractional time in fixed spatial norms. Galerkin methods for our models was studied and existence, uniqueness and stability results was obtained in [4]. Our major goal is to study collocation methods.

  • PDF

Development and validation of prediction equations for the assessment of muscle or fat mass using anthropometric measurements, serum creatinine level, and lifestyle factors among Korean adults

  • Lee, Gyeongsil;Chang, Jooyoung;Hwang, Seung-sik;Son, Joung Sik;Park, Sang Min
    • Nutrition Research and Practice
    • /
    • v.15 no.1
    • /
    • pp.95-105
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: The measurement of body composition, including muscle and fat mass, remains challenging in large epidemiological studies due to time constraint and cost when using accurate modalities. Therefore, this study aimed to develop and validate prediction equations according to sex to measure lean body mass (LBM), appendicular skeletal muscle mass (ASM), and body fat mass (BFM) using anthropometric measurement, serum creatinine level, and lifestyle factors as independent variables and dual-energy X-ray absorptiometry as the reference method. SUBJECTS/METHODS: A sample of the Korean general adult population (men: 7,599; women: 10,009) from the Korean National Health and Nutrition Examination Survey 2008-2011 was included in this study. The participants were divided into the derivation and validation groups via a random number generator (with a ratio of 70:30). The prediction equations were developed using a series of multivariable linear regressions and validated using the Bland-Altman plot and intraclass correlation coefficient (ICC). RESULTS: The initial and practical equations that included age, height, weight, and waist circumference had a different predictive ability for LBM (men: R2 = 0.85, standard error of estimate [SEE] = 2.7 kg; women: R2 = 0.78, SEE = 2.2 kg), ASM (men: R2 = 0.81, SEE = 1.6 kg; women: R2 = 0.71, SEE = 1.2 kg), and BFM (men: R2 = 0.74, SEE = 2.7 kg; women: R2 = 0.83, SEE = 2.2 kg) according to sex. Compared with the first prediction equation, the addition of other factors, including serum creatinine level, physical activity, smoking status, and alcohol use, resulted in an R2 that is higher by 0.01 and SEE that is lower by 0.1. CONCLUSIONS: All equations had low bias, moderate agreement based on the Bland-Altman plot, and high ICC, and this result showed that these equations can be further applied to other epidemiologic studies.

Validation of Prediction Equations to Estimate the Energy Values of Feedstuffs for Broilers: Performance and Carcass Yield

  • Alvarenga, R.R.;Rodrigues, P.B.;Zangeronimo, M.G.;Makiyama, L.;Oliveira, E.C.;Freitas, R.T.F.;Lima, R.R.;Bernardino, V.M.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1474-1483
    • /
    • 2013
  • The objective was to evaluate the use of prediction equations based on the chemical composition of feedstuffs to estimate the values of apparent metabolisable energy corrected for nitrogen balance (AMEn) of corn and soybean meal for broilers. For performance and carcass characteristics, 1,200 one-d-old birds (male and female) were allotted to a completely randomised factorial $2{\times}8$ (two genders and eight experimental diets) with three replicates of each sex with 25 birds. In the metabolism trial, 240 eight-d-old birds were distributed in the same design, but with a split plot in time (age of evaluation) with five, four and three birds per plot, respectively, in stages 8 to 21, 22 to 35, and 36 to 42 d of age. The treatments consisted of the use of six equations systems to predict the AMEn content of feedstuffs, tables of food composition and AMEn values obtained by in vivo assay, totalling eight treatments. Means were compared by Scott-Knott test at 5% probability and a confidence interval of 95% was used to check the fit of the energy values of the diets to the requirements of the birds. As a result of this study, the use of prediction equations resulted in better adjustment to the broiler requirements, resulting in better performance and carcass characteristics compared to the use of tables, however, the use of energy values of feedstuffs obtained by in vivo assay is still the most effective. The best equations were: AMEn = 4,021.8-227.55 Ash (for corn) combined with AMEn = -822.33+69.54 CP-45.26 ADF+90.81 EE (for soybean meal); AMEn = 36.21 CP+85.44 EE+37.26 NFE (nitrogen-free extract) (for corn) combined with AMEn = 37.5 CP+46.39 EE+14.9 NFE (for soybean); and AMEn = 4,164.187+51.006 EE-197.663 Ash-35.689 CF-20.593 NDF (for corn and soybean meal).

Prediction of 2-Dimensional Unsteady Thermal Discharge into a Reservoir (온수의 표면방출에 의한 2차원 비정상 난류 열확산 의 예측)

  • 박상우;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.451-460
    • /
    • 1983
  • Computational four-equation turbulence model is developed and is applied to predict twodimensional unsteady thermal surface discharge into a reservoir. Turbulent stresses and heat fluxes in the momentum and energy equations are determined from transport equations for the turbulent kinetic energy (R), isotropic rate of kinetic energy dissipation (.epsilon.), mean square temperature variance (theta. over bar $^{2}$), and rate of destruction of the temperature variance (.epsilon. $_{\theta}$). Computational results by four-equation model are favorably compared with those obtained by an extended two-equation model. Added advantage of the four-equation model is that it yields quantitative information about the ratio between the velocity time scale and the thermal time scale and more detailed information about turbulent structure. Predicted time scale ratio is within experimental observations by others. Although the mean velocity and temperature fields are similarly predicted by both models, it is found that the four-equation model is preferably candidate for prediction of highly buoyant turbulent flows.