• Title/Summary/Keyword: energy efficient MAC

Search Result 145, Processing Time 0.031 seconds

Energy Efficient Dynamic S-MAC Protocol for Sensor Networks (센서 네트워크에서 에너지 효율적인 동적 S-MAC 프로토콜)

  • Yoo, Dae-Suk;Choi, Seung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.502-509
    • /
    • 2008
  • Wireless sensor networks consist of sensor nodes which are expected to be battery-powered and hard to replace or recharge. Thus, reducing the energy consumption of sensor nodes is an important design consideration in wireless sensor networks. For the implementation of energy-efficient MAC protocol, Sensor-MAC based on IEEE 802.11 protocol. In this paper, which has energy efficient scheduling, was proposed. In this paper, we propose Dynamic S-MAC that is dynamically operated by network-traffic states. Dynamic S-MAC protocol improves energy consumption of S-MAC due to change the frame length according to network-traffic states. Using NS-2 Simulation, we compare the performance of Dynamic S-MAC with S-MAC protocol.

Implementation and Performance Evaluation of ELM-MAC Protocol for Energy Efficiency in Sensor Networks (센서 네트워크에서 에너지 효율을 위한 ELM-MAC 프로토콜의 구현 및 성능평가)

  • Yun, Phil-Jung;Kim, Chang-Hwa;Kim, Sang-Kyung
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.81-88
    • /
    • 2008
  • It is important to study the energy efficient MAC protocol in sensor networks. We propose a new protocol named as ELM?MAC (Energy efficient Link Management MAC) to increase energy efficiency in sensor networks. ELM-MAC protocol operates, uses, and manages the optimized transmission power level to increase energy efficiency in MAC layer. It includes mechanism that uses the adaptive method in change of surround environment for guarantee of link quality. In this paper we implement ELM-MAC and evaluate its performance.

  • PDF

Medium Access Control with Dynamic Frame Length in Wireless Sensor Networks

  • Yoo, Dae-Suk;Choi, Seung-Sik
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.501-510
    • /
    • 2010
  • Wireless sensor networks consist of sensor nodes which are expected to be battery-powered and are hard to replace or recharge. Thus, reducing the energy consumption of sensor nodes is an important design consideration in wireless sensor networks. For the implementation of an energy-efficient MAC protocol, a Sensor-MAC based on the IEEE 802.11 protocol, which has energy efficient scheduling, has been proposed. In this paper, we propose a Dynamic S-MAC that adapts dynamically to the network-traffic state. The dynamic S-MAC protocol improves the energy consumption of the S-MAC by changing the frame length according to the network-traffic state. Using an NS-2 Simulator, we compare the performance of the Dynamic S-MAC with that of the S-MAC protocol.

RIX-MAC: An Energy-Efficient Receiver-Initiated Wakeup MAC Protocol for WSNs

  • Park, Inhye;Lee, Hyungkeun;Kang, Seokjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1604-1617
    • /
    • 2014
  • This paper proposes RIX-MAC (Receiver-Initiated X-MAC), a new energy-efficient MAC protocol based on an asynchronous duty cycling. RIX-MAC improves energy efficiency through utilizing short preambles and adopting the receiver-initiated approach, where RIX-MAC minimizes sender nodes' energy consumption by enabling transmitters to predict receiver nodes' wake-up times. It also reduces receiver nodes' energy consumption by decreasing the number of control frames. We use the network simulator to evaluate RIX-MAC's performance. Compared to the prior asynchronous duty cycling approaches of X-MAC and PW-MAC, the proposed protocol shows a remarkable improvement in energy-efficiency and end-to-end delay.

MAC Algorithm of Sensor Networks to Service System (서비스 시스템에 따른 센서네트워크 MAC 알고리즘)

  • Park, Woo-Chool;Cho, Soo-Hyung;Lee, Sang-Hak;Kim, Dae-Whan;Yoo, June-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.225-227
    • /
    • 2004
  • A sensor networkis composed of a large number of sensor nodes, which are densely deployed either inside the phenomenon or very close to it. One of the most important constraints on sensor nodes is the low power consumption requirement. Sensor nodes carry limited, generally irreplaceable, power sources. Therefore, while traditional networks aim to achieve high quality of service (QoS) provisions, sensor network protocols must focus primarily on power conservation. This paper presents the characteristics of energy consuming, average delay in 802.11 MAC, S-MAC that is specifically designed for wireless sensor networks. We analyze the energy consuming state in the 802.11 MAC in the simulation topology nodes, and measure average delay in 802.11 and S-MAC. Energy efficiency is the primary goal in this protocol design. 802.11 MAC is more efficient than S-MAC in the average delay, throughput. However S-MAC is an energy efficient protocol, a tradeoff between energy efficiency and delay.

  • PDF

The Energy Performance Analysis Between Synchronous and Asynchronous Duty Cycle based MAC Protocols in Wireless Sensor Networks (무선 센서네트워크 환경에서 Duty Cycle 기반 동기식 및 비동기식 MAC 프로토콜의 에너지 성능과 지연시간에 대한 상호 분석)

  • Lee, Jae-Ho;Eom, Doo-Seop
    • Journal of Information Technology Services
    • /
    • v.10 no.3
    • /
    • pp.237-250
    • /
    • 2011
  • Recently, Wireless Sensor Networks (WSN) require energy performance and guaranteed delivery delay time, contrarily with previous MAC protocols that aim to high throughput mostly. In order to satisfy the new significant requirements, many MAC protocols of WSN employ and try to enhance the duty cycle mechanism which is energy efficient technique in MAC layer. This duty cycle mechanism is oriented by toggling the transceiver conditions composed of wakeup and sleep states. The synchronous MAC protocols perform the period synchronization process. Hence, these are energy efficient in periodic monitoring environment, but are inefficient in where an event is incurred rarely and infrequently. Otherwise, the performance of asynchronous MAC protocols are contrarily with synchronous protocols. In this paper, we design two models consisting Always-busy and Always-idle ti simplify the general network congestion conditions. Through these models, moreover, we analyze two types MAC protocols in terms of energy efficiency and delay performance by analytical results. Additionally, we also evaluate two MAC protocols with two gongestion models that we designed. By the analytical and simulated results, we provide the general and efficient decision method in which protocols are more appropriate in a certain WSN environment.

SB-MAC : Energy efficient Sink node Based MAC protocol for Wireless Sensor Networks (무선 센서 네트워크 에서 에너지 효율적인 싱크노드 기반 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.177-182
    • /
    • 2014
  • In this paper, we propose an energy efficient sink node based MAC protocol for Wireless Sensor Networks (WSNs). The proposed sink node-based MAC (SB-MAC) protocol uses a RB(rapid beacon) frame to save sender's energy consumption and to reduce transmission delay. The RB frame is a modified IEEE 802.15.4 beacon frame. The RB frame contains the length of the sender nodes data. Using this information other nodes except sender and receiver nodes can be stay sleep mode long time to reduce energy consumption. Results have shown that the SB-MAC protocol outperformed other protocols like X-MAC and RI-MAC in terms of packet delivery delay and energy consumption. The SB-MAC protocol is especially energy efficient for the networks with one sink node and many senders.

Energy Efficient Medium Access Control for Large-Scale Sensor Networks (대규모 센서 네트워크에서의 에너지 효율성을 고려한 MAC 프로토콜)

  • Bae, Jin-Heon;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.31-36
    • /
    • 2007
  • This paper proposes Co-MAC (Coexistence MAC), an energy efficient medium access control protocol designed for large-scale sensor networks. In Co-MAC protocol, an overall network is divided into independent subnets, and each subnet orthogonally operates on time line in a temporal fashion. The basic idea of Co-MAC is to evenly distribute sensor nodes in a certain geographic area based on subnets to minimize overhearing which means the reception of unnecessary data packets from neighboring nodes. In our simulation, it was observed that energy efficiency of Co-MAC outperforms conventional MAC protocols under the given conditions.

An Energy and Delay Efficient Hybrid MAC Protocol for Multi-Hop Wireless Sensor Networks (멀티 홉 무선센서네트워크에서 에너지와 지연에 효율적인 하이브리드 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.471-476
    • /
    • 2015
  • In this paper, we propose an energy efficient hybrid MAC protocol for multi-hop wireless sensor networks. The proposed MAC protocol used a hybrid mechanism, in which contention-based MAC protocol and contention free MAC protocol are combined. The sensor nodes located far from the sink node usually send few data packet since they try to send measured data by themselves. So contention-based MAC protocol is useful among them. But other nodes located near sink node usually have lots of data packets since they plays as a relay node. Contention-based MAC protocol among them is not suitable. Using contention-based MAC protocol in heavy data traffic environment, packet collisions and transmission delay may increase. In this paper, slot assignment between sender nodes by sink node is used. The proposed mechanism is efficient in energy and latency. Results showed that our MAC protocol outperformed other protocol in terms of data packet delivery delay and energy consumption.

Energy Efficient and Multimedia Traffic Friendly MAC Protocol in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적이고 멀티미디어 트래픽에 적합한 MAC 프로토콜)

  • Kim, Seong Cheol;Kim, Hye Yun;Kim, Joong Jae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1460-1465
    • /
    • 2016
  • In this paper, we propose an energy efficient and multimedia traffic friendly MAC protocol (EEMF-MAC) that controls sender's wakeup period based on the data packet's transmission urgency and the receiver's wakeup periods based on the received data packet traffic loads. The protocol is useful for applications such as object tracking, real time data gathering, in which priority-based packet transmission is required. The basic idea of EEMF-MAC is that it uses the priority concept with transmission urgency of sender's data packet to reduce the transmission delay of the urgent data and it also uses duty cycling technique in order to achieve energy efficiency. EEMF-MAC showed a better performance in energy efficiency and packet transmission delay compared to existing protocols, RI-MAC and EE-RI-MAC.