• Title/Summary/Keyword: energy dissipation devices

검색결과 115건 처리시간 0.025초

전기자동차용 고신뢰성 파워모듈 패키징 기술 (Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications)

  • 윤정원;방정환;고용호;유세훈;김준기;이창우
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.1-13
    • /
    • 2014
  • The paper gives an overview of the concepts, basic requirements, and trends regarding packaging technologies of power modules in hybrid (HEV) and electric vehicles (EV). Power electronics is gaining more and more importance in the automotive sector due to the slow but steady progress of introducing partially or even fully electric powered vehicles. The demands for power electronic devices and systems are manifold, and concerns besides aspects such as energy efficiency, cooling and costs especially robustness and lifetime issues. Higher operation temperatures and the current density increase of new IGBT (Insulated Gate Bipolar Transistor) generations make it more and more complicated to meet the quality requirements for power electronic modules. Especially the increasing heat dissipation inside the silicon (Si) leads to maximum operation temperatures of nearly $200^{\circ}C$. As a result new packaging technologies are needed to face the demands of power modules in the future. Wide-band gap (WBG) semiconductors such as silicon carbide (SiC) or gallium nitride (GaN) have the potential to considerably enhance the energy efficiency and to reduce the weight of power electronic systems in EVs due to their improved electrical and thermal properties in comparison to Si based solutions. In this paper, we will introduce various package materials, advanced packaging technologies, heat dissipation and thermal management of advanced power modules with extended reliability for EV applications. In addition, SiC and GaN based WBG power modules will be introduced.

Influence of Bath Temperature on Electroless Ni-B Film Deposition on PCB for High Power LED Packaging

  • Samuel, Tweneboah-Koduah;Jo, Yang-Rae;Yoon, Jae-Sik;Lee, Youn-Seoung;Kim, Hyung-Chul;Rha, Sa-Kyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.323-323
    • /
    • 2013
  • High power light-emitting diodes (LEDs) are widely used in many device applications due to its ability to operate at high power and produce high luminance. However, releasing the heat accumulated in the device during operating time is a serious problem that needs to be resolved to ensure high optical efficiency. Ceramic or Aluminium base metal printed circuit boards are generally used as integral parts of communication and power devices due to its outstanding thermal dissipation capabilities as heat sink or heat spreader. We investigated the characterisation of electroless plating of Ni-B film according to plating bath temperature, ranging from $50^{\circ}C$ to $75^{\circ}C$ on Ag paste/anodised Al ($Al_2O_3$)/Al substrate to be used in metal PCB for high power LED packing systems. X-ray diffraction (XRD), Field-Emission Scanning Electron Microscopy (FE-SEM) and X-ray Photoelectron Spectroscopy (XPS) were used in the film analysis. By XRD result, the structure of the as deposited Ni-B film was amorphous irrespective of bath temperature. The activation energy of electroless Ni-B plating was 59.78 kJ/mol at the temperature region of $50{\sim}75^{\circ}C$. In addition, the Ni-B film grew selectively on the patterned Ag paste surface.

  • PDF

점탄성 감쇠기를 설치한 2/5 축척 강구조물의 지진하중에 의한 거동연구 (Seismic Behavior of A 2/5-Scale Steel Structure with Added Viscoelastic Dampers)

  • Oh, Soon-Taek
    • 한국안전학회지
    • /
    • 제8권1호
    • /
    • pp.80-87
    • /
    • 1993
  • 본 논문은 에너지 분산 장치의 일종인 점탄성 감쇠기를 설치한 건물의 거동에 관한 실험 및 해석적 연구를 다루고자 한다. 지진 모형 실험 장치를 이용하여 감쇠기를 설치한 건물의 구조응답을 구하고. 이를 감쇠기를 설치하지 않은 건물에 대하여 행해진 비탄성 해석 결과와 비교한다. 결론적으로 말하면. 점탄성 감쇠기는 강지진 하중에 의하여 건물에 발생한 과도한 진동을 감소시키는데 효과적이다 일반적으로 점탄성 감쇠기를 건물에 설치함으로써 감쇠비와 함께 강성도가 증가하여 지진 응답을 감소시키는데 기여하나, 대부분은 감쇠기의 역할에 의해 증가된 감쇠비의 영향인 것으로 밝혀졌다. 모드 변형에너지법을 이용하여 감쇠기에 의해 증가된 등가구조 감쇠를 성공적으로 예측할 수 있으며 따라서 점탄성 감쇠기를 설치한 건물의 지진 응답이 일반적인 모드 해석 기법을 이용한 수치모형해석에 의해 정확히 예측된다.

  • PDF

PCS 구조 시스템 접합부의 초기 강성에 대한 연구 (Initial Stiffness of Beam Column Joints of PCS Structural Systems)

  • 박순규;김무경
    • 콘크리트학회논문집
    • /
    • 제20권3호
    • /
    • pp.271-282
    • /
    • 2008
  • PCS 구조 시스템은 공장 제작 콘크리트 기둥과 휨, 전단성능에 유리한 철골보를 접합한 복합구조의 일종이다. 접합부는 기둥을 관통하는 볼트를 사용하여 단부평판 접합하게 된다. 따라서 건식공법이 가능하여 작업환경이 양호하고 공기단축이 가능하며 해체가 용이한 장점이 있다. 하지만 실험을 통해 PCS 시스템의 내진성능을 분석한 결과 강도, 강성, 에너지소산 능력은 ACI 기준에 만족하였으나, 초기 강성의 경우 실험체 모두 ACI 기준에 부족하였다. 초기강성이 저하된 요인을 조사하여 접합부 강성을 증가시킬 수 있는 방안을 마련하고자 컴퓨터 시뮬레이션을 하였다. ABAQUS를 사용하여 네오프랜 패드의 유무와 두께, 단부평판과 기둥의 접촉면 형상, 볼트 긴장력의 크기, 단부평판의 강성 등과 같이 접합부 강성에 영향을 주는 변수들로 연구를 수행하였다. 그 결과 기둥과 단부평판 사이의 초기 변형이나 네오프랜과 같은 채움재와 단부평판의 낮은 강성이 초기 강성을 저하시키는 것으로 조사되었다. 접합부 성능을 개선하는 방안으로 볼트간격을 조정하거나 스티프너로 보강하여 단부평판의 강성을 높이는 방법도 효과가 있었으나, 볼트의 긴장력을 증가하는 방법이 가장 효과적이었다. 단부평판의 상하부에 분리형 네오프랜 패드를 끼워 갭의 영향을 최소화하는 방법도 꽤 우수하였다.

Generalized complex mode superposition approach for non-classically damped systems

  • Chen, Huating;Liu, Yanhui;Tan, Ping
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.271-286
    • /
    • 2020
  • Passive control technologies are commonly used in several areas to suppress structural vibrations by the addition of supplementary damping, and some modal damping may be heavy beyond critical damping even for regular structures with energy dissipation devices. The design of passive control structures is typically based on (complex) mode superposition approaches. However, the conventional mode superposition approach is predominantly applied to cases of under-critical damping. Moreover, when any modal damping ratio is equal or close to 1.0, the system becomes defective, i.e., a complete set of eigenvectors cannot be obtained such that some well-known algorithms for the quadratic eigenvalue problem are invalid. In this paper, a generalized complex mode superposition method that is suitable for under-critical, critical and over-critical damping is proposed and expressed in a unified form for structural displacement, velocity and acceleration responses. In the new method, the conventional algorithm for the eigenvalue problem is still valid, even though the system becomes defective due to critical modal damping. Based on the modal truncation error analysis, modal corrected methods for displacement and acceleration responses are developed to approximately consider the contribution of the truncated higher modes. Finally, the implementation of the proposed methods is presented through two numerical examples, and the effectiveness is investigated. The results also show that over-critically damped modes have a significant impact on structural responses. This study is a development of the original complex mode superposition method and can be applied well to dynamic analyses of non-classically damped systems.

Development of the Damping Coefficients for Weak and Moderate Earthquake Ground Motions

  • Kim, Myeong-Han
    • 한국방재학회 논문집
    • /
    • 제8권5호
    • /
    • pp.1-6
    • /
    • 2008
  • 대부분의 내진설계기준에서는 설계지반운동을 정의하기 위해서 설계스펙트럼을 제시하고 있다. 기준에서 제시되는 설계스펙트럼은 일반적으로 5% 임계감쇠비에 대한 것이며, 이것은 일반적인 건축구조물에 적용할 수 있는 것이다. 에너지 소산장치나 면진 시스템의 적용이 점차 증가하고 있으며, 이러한 장치를 적용한 건축구조물의 내진해석을 위해서는 5% 임계감쇠비를 초과하는 설계스펙트럼이 필요하다. 5% 임계감쇠비에 대한 설계스펙트럼을 다른 임계감쇠비에 대한 설계스펙트럼으로 변환하기 위해서는 감쇠계수가 효과적으로 이용될 수 있다. 현재의 내진설계기준에서 제시하고 있는 감쇠계수는 강진자료를 바탕으로 제시된 것이다. 중진 및 약진은 강진과는 다른 특성을 가지므로, 이러한 감쇠계수가 중진 및 약진 지역에 적용하는 것은 충분한 검토가 필요할 것이다. 이 논문에서는 중진 및 약진자료를 이용한 감쇠계수를 제시하고, 현재 설계기준에서 제시하고 있는 감쇠계수와 비교하였다.

Nonlinear stochastic optimal control strategy of hysteretic structures

  • Li, Jie;Peng, Yong-Bo;Chen, Jian-Bing
    • Structural Engineering and Mechanics
    • /
    • 제38권1호
    • /
    • pp.39-63
    • /
    • 2011
  • Referring to the formulation of physical stochastic optimal control of structures and the scheme of optimal polynomial control, a nonlinear stochastic optimal control strategy is developed for a class of structural systems with hysteretic behaviors in the present paper. This control strategy provides an amenable approach to the classical stochastic optimal control strategies, bypasses the dilemma involved in It$\hat{o}$-type stochastic differential equations and is applicable to the dynamical systems driven by practical non-stationary and non-white random excitations, such as earthquake ground motions, strong winds and sea waves. The newly developed generalized optimal control policy is integrated in the nonlinear stochastic optimal control scheme so as to logically distribute the controllers and design their parameters associated with control gains. For illustrative purposes, the stochastic optimal controls of two base-excited multi-degree-of-freedom structural systems with hysteretic behavior in Clough bilinear model and Bouc-Wen differential model, respectively, are investigated. Numerical results reveal that a linear control with the 1st-order controller suffices even for the hysteretic structural systems when a control criterion in exceedance probability performance function for designing the weighting matrices is employed. This is practically meaningful due to the nonlinear controllers which may be associated with dynamical instabilities being saved. It is also noted that using the generalized optimal control policy, the maximum control effectiveness with the few number of control devices can be achieved, allowing for a desirable structural performance. It is remarked, meanwhile, that the response process and energy-dissipation behavior of the hysteretic structures are controlled to a certain extent.

Performance evaluation of a seismic retrofitted R.C. precast industrial building

  • Nastri, Elide;Vergato, Mariacristina;Latour, Massimo
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.13-21
    • /
    • 2017
  • Recent seismic events occurred in Italy (Emilia-Romagna 2012, Abruzzo 2009) and worldwide (New Zealand 2010 and 2011) highlighted some of the weaknesses of precast concrete industrial buildings, especially those related to the connecting systems traditionally employed to fasten the cladding panels to the internal framing. In fact, one of the most commons fails it is possible to observe in such structural typologies is related to the out-of-plane collapse of the external walls due to the unsatisfactory behaviour of the connectors used to join the panels to the perimeter beams. In this work, the strengthening of a traditional industrial building, assumed as a case study, made by precast reinforced concrete is proposed by the adoption of a dual system allowing the reinforcement of the structure by acting both internally; by pendular columns and, externally, on the walls. In particular, traditional connections at the top of the walls are substituted by devices able to work as a slider with vertical axis while, the bottom of the walls is equipped with two or more hysteretic dampers working on the uplift of the cladding panels occurring under seismic actions. By means of this approach, the structure is stiffened; obtaining a reduction of the lateral drifts under serviceability limit states. In addition, its seismic behaviour is improved due to the additional source of energy dissipation represented by the dampers located at the base of the walls. The effectiveness of the suggested retrofitting approach has been checked by comparing the performance of the retrofitted structure with those of the structure unreinforced by means of both pushover and Incremental Dynamic Analyses (IDA) in terms of behaviour factor, assumed as a measure of the ductility capacity of the structure.

Seismic control of structures using sloped bottom tuned liquid dampers

  • Bhosale, Amardeep D.;Murudi, Mohan M.
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.233-241
    • /
    • 2017
  • Earlier numerous studies have been done on implementation of Tuned Liquid Damper (TLD) for structural vibration control by many researchers. As per current review there is no significant study on a sloped bottom TLD. TLD's are passive devices. A TLD is a tank rigidly attached to the structure and filled partially by liquid. When fundamental linear sloshing frequency is tuned to structure's natural frequency large sloshing amplitude is expected. In this study set of experiments are conducted on flat bottom and sloped bottom TLD at beach slope $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$, for different types of structures, mass ratio, and depth ratio to investigate the overall effectiveness of TLD and specific effect of TLD parameters on structural response. This experimental study shows that a properly designed TLD reduces structural response. It is also observed that effectiveness of TLD increases with increase in mass ratio. In this experimental study an effectiveness of sloped bottom TLD with beach slope $30^{\circ}$ is investigated and compared with that of flat bottom TLD in reducing the structural response. It is observed from this study that efficiency of sloped bottom TLD in reducing the response of structure is more as compared to that of flat bottom TLD. It is shown that there is good agreement between numerical simulation of flat bottom and sloped bottom TLD and its experimental results. Also an attempt has been made to investigate the effectiveness of sloped bottom TLD with beach slope $20^{\circ}$ and $45^{\circ}$.

Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping

  • Niu, Huawei;Chen, Zhengqing;Hua, Xugang;Zhang, Wei
    • Smart Structures and Systems
    • /
    • 제22권6호
    • /
    • pp.727-741
    • /
    • 2018
  • To mitigate vibrations, tuned mass dampers(TMD) are widely used for long span bridges or high-rise buildings. Due to some durability concerns, such as fluid degradation, oil leakage, etc., the alternative solutions, such as the non-contacted eddy current damping (ECD), are proposed for mechanical devices in small scales. In the present study, a new eddy current damping TMD (ECD-TMD) is proposed and developed for large scale civil infrastructure applications. Starting from parametric study on finite element analysis of the ECD-TMD, the new design is enhanced via using the permanent magnets to eliminate the power need and a combination of a copper plate and a steel plate to improve the energy dissipation efficiency. Additional special design includes installation of two permanent magnets at the same side above the copper plate to easily adjust the gap as well as the damping. In a case study, the proposed ECD-TMD is demonstrated in the application of a steel arch bridge to mitigate the wind-induced vibrations of the flexible hangers. After a brief introduction of the configuration and the installation process for the damper, the mitigation effects are measured for the ambient vibration and forced vibration scenarios. The results show that the damping ratios increase to 3% for the weak axis after the installation of the ECD-TMDs and the maximum vibration amplitudes can be reduced by 60%.