• 제목/요약/키워드: energy dissipation bay

검색결과 42건 처리시간 0.024초

Experimental study on hysteretic behavior of steel moment frame equipped with elliptical brace

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.891-907
    • /
    • 2020
  • Many studies reveal that during destructive earthquakes, most of the structures enter the inelastic phase. The amount of hysteretic energy in a structure is considered as an important criterion in structure design and an important indicator for the degree of its damage or vulnerability. The hysteretic energy value wasted after the structure yields is the most important component of the energy equation that affects the structures system damage thereof. Controlling this value of energy leads to controlling the structure behavior. Here, for the first time, the hysteretic behavior and energy dissipation capacity are assessed at presence of elliptical braced resisting frames (ELBRFs), through an experimental study and numerical analysis of FEM. The ELBRFs are of lateral load systems, when located in the middle bay of the frame and connected properly to the beams and columns, in addition to improving the structural behavior, do not have the problem of architectural space in the bracing systems. The energy dissipation capacity is assessed in four frames of small single-story single-bay ELBRFs at ½ scale with different accessories, and compared with SMRF and X-bracing systems. The frames are analyzed through a nonlinear FEM and a quasi-static cyclic loading. The performance features here consist of hysteresis behavior, plasticity factor, energy dissipation, resistance and stiffness variation, shear strength and Von-Mises stress distribution. The test results indicate that the good behavior of the elliptical bracing resisting frame improves strength, stiffness, ductility and dissipated energy capacity in a significant manner.

Effect of Ferro-cement retrofit in the stiffened infill RC frame

  • Arulselvan, Suyamburaja;Sathiaseelan, P.
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.511-518
    • /
    • 2017
  • This paper presents an experimental investigation on the contribution of RCC strip in the in-filled RC frames. In this research, two frames were tested to study the behavior of retrofitted RC frame under cyclic loading. In the two frame, one was three bay four storey R.C frame with central bay brick infill with RCC strip in-between brick layers and the other was retrofitted frame with same stiffened brick work. Effective rehabilitation is required some times to strengthened the RC frames. Ferrocement concrete strengthening was used to retrofit the frame after the frame was partially collapsed. The main effects of the frames were investigated in terms of displacement, stiffness, ductility and energy dissipation capacity. Diagonal cracks in the infill bays were entirely eliminated by introducing two monolithic RCC strips. Thus more stability of the frame was obtained by providing RCC strips in the infill bays. Load carrying capacity of the frame was increased by enlarging the section in the retrofitted area.

Shaking table test and numerical analysis of a combined energy dissipation system with metallic yield dampers and oil dampers

  • Zhou, Qiang;Lu, Xilin
    • Structural Engineering and Mechanics
    • /
    • 제17권2호
    • /
    • pp.187-201
    • /
    • 2004
  • A shaking table test on a three-story one-bay steel frame model with metallic yield dampers and their parallel connection with oil dampers is carried out to study the dynamic characteristics and seismic performance of the energy dissipation system. It is found from the test that the combined energy dissipation system has favorable reducing vibration effects on structural displacement, and the structural peak acceleration can not evidently be reduced under small intensity seismic excitations, but in most cases the vibration reduction effect is very good under large intensity seismic excitations. Test results also show that stiffness of the energy dissipation devices should match their damping. Dynamic analysis method and mechanics models of these two dampers are proposed. In the analysis method, the force-displacement relationship of the metallic yield damper is represented by an elastic perfectly plastic model, and the behavior of the oil damper is simulated by a velocity and displacement relative model in which the contributions of the oil damper to the damping force and stiffness of the system are considered. Validity of the analytical model and the method is verified through comparison between the results of the shaking table test and numerical analysis.

Parametric study for buildings with combined displacement-dependent and velocity-dependent energy dissipation devices

  • Pong, W.S.;Tsai, C.S.;Chen, Ching-Shyang;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • 제14권1호
    • /
    • pp.85-98
    • /
    • 2002
  • The use of supplemental damping to dissipate seismic energy is one of the most economical and effective ways to mitigate the effects of earthquakes on structures. Both displacement-dependent and velocity-dependent devices dissipate earthquake-induced energy effectively. Combining displacement-dependent and velocity-dependent devices for seismic mitigation of structures minimizes the shortcomings of individual dampers, and is the most economical solution for seismic mitigation. However, there are few publications related to the optimum distributions of combined devices in a multiple-bay frame building. In this paper, the effectiveness of a building consisting of multiple bags equipped with combined displacement-dependent and velocity-dependent devices is investigated. A four-story building with six bays was selected as an example to examine the efficiency of the proposed combination methods. The parametric study shows that appropriate arrangements of different kinds of devices make the devices more efficient and economical.

Experimental study on infilled frames strengthened by profiled steel sheet bracing

  • Cao, Pingzhou;Feng, Ningning;Wu, Kai
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.777-790
    • /
    • 2014
  • The purpose of this study is to investigate the seismic performance of reinforced concrete (RC) frames strengthened by profiled steel sheet bracing which takes the influence of infill walls into consideration. One-bay, two-story, 1/3 scale two specimens shared same feature of dimensions, one specimen consists only beams and columns; the other one is reinforced by profiled steel sheet bracing with infill walls. Hysteretic curves, envelope curves, stiffness degradation curves and energy dissipation capacities are presented based on test data. Test results indicate that the ultimate load of strengthened specimen has been improved by 225%. The stiffness of reinforced by profiled steel sheet bracing has been increased by 108%. This demonstrates that infill walls and profiled steel sheet bracing enhanced the strength and stiffness distinctly. Energy dissipation has an obvious increase after 12 cycles. This shows that the reinforced specimen is able to bear the lateral load effectively and absorb lots of seismic energy.

Seismic behavior of RC frames with partially attached steel shear walls: A numerical study

  • Kambiz Cheraghi;Majid Darbandkohi;Mehrzad TahamouliRoudsari;Sasan Kiasat
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.443-454
    • /
    • 2023
  • Steel shear walls are used to strengthen steel and concrete structures. One such system is Partial Attached Steel Shear Walls (PASSW), which are only connected to frame beams. This system offers both structural and architectural advantages. This study first calibrated the numerical model of RC frames with and without PASSW using an experimental sample. The seismic performance of the RC frame was evaluated by 30 non-linear static analyses, which considered stiffness, ductility, lateral strength, and energy dissipation, to investigate the effect of PASSW width and column axial load. Based on numerical results and a curve fitting technique, a lateral stiffness equation was developed for frames equipped with PASSW. The effect of the shear wall location on the concrete frame was evaluated through eight analyses. Nonlinear dynamic analysis was performed to investigate the effect of the shear wall on maximum frame displacement using three earthquake records. The results revealed that if PASSW is designed with appropriate stiffness, it can increase the energy dissipation and ductility of the frame by 2 and 1.2 times, respectively. The stiffness and strength of the frame are greatly influenced by PASSW, while axial force has the most significant negative impact on energy dissipation. Furthermore, the location of PASSW does not affect the frame's behavior, and it is possible to have large openings in the frame bay.

Experimental study on seismic performances of steel framebent structures

  • Liang, Jiongfeng;Gu, Lian S.;Hu, Ming H.
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1111-1123
    • /
    • 2016
  • To study seismic performance of steel frame-bent structure, one specimen with one-tenth scale, three-bay, and five-story was tested under reversed cyclic lateral load. The entire loading process and failure mode were observed, and the seismic performance indexes including hysteretic loops, skeleton curve, ductility, load bearing capacity, drift ratio, energy dissipation capacity and stiffness degradation were analyzed. The results show that the steel frame-bent structure has good seismic performance. And the ductility and the energy dissipation capacity were good, the hysteresis loops were in spindle shape, which shape were full and had larger area. The ultimate elastic-plastic drift ratio is larger than the limit value specified by seismic code, showing the high capacity of collapse resistance. It can be helpful to design this kind of structure in high-risk seismic zone.

Effect of frame connection rigidity on the behavior of infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • 제19권4호
    • /
    • pp.227-241
    • /
    • 2020
  • An experimental study has been carried out to investigate the effect of beam to column connection rigidity on the behavior of infilled steel frames. Five half scale, single-story and single-bay specimens, including four infilled frames, as well as, one bare frame, were tested under in-plane lateral cyclic reversal loading. The connections of beam to column for bare frame as well as two infill specimens were rigid, whereas those of others were pinned. For each frame type, two different infill panels were considered: (1) masonry infill, (2) masonry infill strengthened with shotcrete. The experimental results show that the infilled frames with pinned connections have less stiffness, strength and potential of energy dissipation compared to those with rigid connections. Furthermore, the validity of analytical methods proposed in the literature was examined by comparing the experimental data with analytical ones. It is shown that the analytical methods overestimate the stiffness of infilled frame with pinned connections; however, the strength estimation of both infilled frames with rigid and pinned connections is acceptable.

철근콘크리트 축소모델의 구조거동 상사성에 관한 실험연구 (An Experimental Study on the Similitude of Structural Behaviors for Small-Scale Modeling of Reinforced Concrete Structures)

  • 이한선;우성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.401-407
    • /
    • 1996
  • A 2-bay 2-story moment-resisting reinforced concrete plane frame with seismic detail was designed. One 1/2.5-scale and one 1/10th model subassemblages were manufactured accoring to the required similitude law. Then the reversed load tests under the displacement control were performed statically to these subassemblages. The results of these tests were compared regarding to the similitude in the characteristics of structural behaviors such as strength., stiffness, energy dissipation, failure modes and local deformations. Based on these results, the following conclussions were drawn : (1) The strength of 1/10 model was very similar to that of 1/2.5 specimen. (2) The initial stiffness of 1/10 model appers to be approximately 2/3 of that of 1/2.5 specimen. (3) 1/10 model has therefore smaller energy dissipation capacity than 1/2.5 specimen. (4) Inelastic excursion mechanisms of 1/2.5 specimen and 1/10 model apper to be a little different.

  • PDF

Experimental investigation of infilled r/c frames with eccentric openings

  • Kakaletsis, D.;Karayannis, C.
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.231-250
    • /
    • 2007
  • The influence of masonry infills with eccentric openings on the seismic performance of reinforced concrete (r/c) frames that were designed in accordance with current code provisions are investigated. Eight 1/3-scale, single-story, single-bay frame specimens were tested under cyclic horizontal loading up to a drift level of 4%. In all examined cases the shear strength of columns was higher than the cracking shear strength of solid infill. The parameters investigated include the shape and the location of the opening. Assessment of the behavior of the frames is also attempted, based on the observed failure modes, strength, stiffness, ductility, energy dissipation capacity and degradation from cycling loading. Based on these results there can be deduced that masonry infills with eccentrically located openings has been proven to be beneficial to the seismic capacity of the bare r/c frames in terms of strength, stiffness, ductility and energy dissipation. The location of the opening must be as near to the edge of the infill as possible in order to provide an improvement in the performance of the infilled frame.