• Title/Summary/Keyword: energy dissipating devices

Search Result 22, Processing Time 0.014 seconds

Energy-Efficient Signal Processing Using FPGAs (FPGA 상에서 에너지 효율이 높은 병렬 신호처리 기법)

  • Jang Ju-wook;Hwang Yunil;Scrofano Ronald;Prasanna Viktor K.
    • The KIPS Transactions:PartA
    • /
    • v.12A no.4 s.94
    • /
    • pp.305-312
    • /
    • 2005
  • In this paper, we present algorithm-level techniques for energy-efficient design at the algorithm level using FPGAs. We then use these techniques to create energy-efficient designs for two signal processing kernel applications: fast Fourier transform(FFT) and matrix multiplication. We evaluate the performance, in terms of both latency and energy efficiency, of FPGAs in performing these tasks. Using a Xilinx Virtex-II as the target FPGA, we compare the performance of our designs to those from the Xilinx library as well as to conventional algorithms run on the PowerPC core embedded in the Virtex-II Pro and the Texas Instruments TMS320C6415. Our evaluations are done both through estimation based on energy and latency equations on high-level and through low-level simulation. For FFT, our designs dissipated an average of $50\%$ less energy than the design from the Xilinx library and $56\%$ less than the DSP. Our designs showed an EAT factor of 10 times improvement over the embedded processor. These results provide a concrete evidence to substantiate the idea that FPGAs can outperform DSPs and embedded processors in signal processing. Further, they show that PFGAs can achieve this performance while still dissipating less energy than the other two types of devices.

Seismic Response Control of Adjacent Structures by Semi-Active Fuzzy Control of Magneto-Rheological Damper (MR 감쇠기의 준능동 퍼지제어기법을 이용한 인접구조물의 지진응답제어)

  • Kim, Min-Seob;Ok, Seung-Yong;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.39-50
    • /
    • 2009
  • In this paper, a method for reducing seismic responses of adjacent buildings is studied that involves connecting two buildings with energy-dissipating devices, such as MR dampers. For the vibration control of the adjacent buildings, a fuzzy control technique with semi-active MR dampers is proposed. A fuzzy controller, which can appropriately modulate the damping forces by controlling the input voltage in real time, is designed according to the proposed method. To verify the validity of the proposed method, numerical simulations are performed. In the numerical simulations, historical earthquake records with diverse frequency contents and different peak values are used. For the purpose of comparison, an uncontrolled system, a passive control system and a semi-active fuzzy control system are considered. The comparative results prove the effectiveness of the proposed control technique, i.e. the numerical results show that the fuzzy controlled semi-active MR dampers can effectively reduce the earthquake responses of the adjacent structures.