• Title/Summary/Keyword: energy detectors

Search Result 307, Processing Time 0.029 seconds

A Study on the Usefulness of Copper Filters Made with 3D Printers in Longbone Examination Using Long Length Detector (장골 검출기를 이용한 장골 검사에서 3D 프린터로 제작한 구리 필터의 유용성 연구)

  • Kim, Woo-Young;Seo, Hyun-Soo;Han, Bong-Ju;Yoon, Myeong-Seong;Lee, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.607-613
    • /
    • 2021
  • Long-bone examination is mainly used for inspection of the lower extremities. Recently, a long length detector (FXRD-1751S, VIEWORKS, Korea) with three digital detectors attached has been developed. High energy X-rays are used because pelvic areas require high image quality. In this case, X-rays are transmitted a lot in thin areas such as an ankle, and it is not suitable for diagnosing an image. Therefore, this study use copper filters made with 3D printers to increase image quality in the Long-bone inspection. A copper filter was manufactured in consideration of the overall thickness of the lower part. The experiment was conducted in anterior-posterior (AP) and lateral (LAT) positions, depending on the presence or absence of the filter. 5x5 pixels of region of interest (ROI) were selected from the pelvis, knee, and ankle areas. X-rays were irradiated under the conditions of 70 kVp and 40 mAs for AP, 80 kVp, and 63 mAs for lat when without filters, 90 kVp and 80 mAs for AP, 90 kVp and 100 mAs for lat when with filters. signal to noise ratio(SNR) ratio and contrast to noise (CNR) values were measured 1106.38, 14.34 before applying the filter and 1189.32, 70.43 after the filter. For the knee area, 650.44, 97.61 before applying the filter, and 1013.17, 444.24 after applying the filter. For the ankle area, 206.65, 23.68 before applying the filter and 993.50, 136.11 after applying the filter. In the Long-bone examination, SNR and CNR were greatly measured when the filter was applied, confirmed the availability of using the copper additional filter.

Comparison of Average Glandular Dose in Screen-Film and Digital Mammography Using Breast Tissue-Equivalent Phantom (유방조직등가 팬텀을 이용한 Screen-Film과 Digital Mammography에서의 평균 유선선량)

  • Shin, Gwi-Soon;Kim, Jung-Min;Kim, You-Hyun;Choi, Jong-Hak;Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.13-23
    • /
    • 2007
  • In recent years, mammography system is changed rapidly from conventional screen-film system to digital system for application to screening and diagnosis. Digital mammography system provides several advantages over screen-film mammography system. According to the information provided by the manufacturer, digital mammography system offers radiation dose reduction in comparison with screen-film mammography system, because of digital detector, particularly direct digital detector has higher x-ray absorption efficiency than screen-film combination or imaging plate(IP). We measured average glandular doses(AGD) in screen-film mammography(SFM) system with slow screen-film combination, computed mammography(CM) system, indirect digital mammography(IDM) system and direct digital mammography(DDM) system using brest tissue-equivalent phantom(glandularity 30%, 50% and 70%). The results were shown as follows : AGD values for DDM system were highest than those for other systems. Although automatic exposure control(AEC) mode was selected, the curve of the AGD values against thickness or glandularity increased significantly for the SFM system with the uniform target/filter(Mo/Mo) combination. Therefore, the AGD values for the high energy examinations were highest in the SFM system, and those for the low energy examinations were highest in the DDM system. But the curve of the AGD values against thickness and glandularity increased gently for CM system with the automatic selection of the target/filter combination (from Mo/Mo to Mo/Rh or from Mo/Rh to Rh/Rh), and the AGD values were lowest. Consequently, the parameters in mammography for each exposure besides detection efficiency play an important role in oder to estimate a patient radiation dose.

  • PDF

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Characteristic Evaluation of Optically Stimulated Luminescent Dosimeter (OSLD) for Dosimetry (광유도발광선량계(Optically Stimulated Luminescent Dosimeter)의 선량 특성에 관한 고찰)

  • Kim, Jeong-Mi;Jeon, Su-Dong;Back, Geum-Mun;Jo, Young-Pil;Yun, Hwa-Ryong;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate dosimetric characteristics of Optically stimulated luminescent dosimeters (OSLD) for dosimetry Materials and Methods: InLight/OSL $NanoDot^{TM}$ dosimeters was used including $Inlight^{TM}MicroStar$ Reader, Solid Water Phantom, and Linear accelerator ($TRYLOGY^{(R)}$) OSLDs were placed at a Dmax in a solid water phantom and were irradiated with 100 cGy of 6 MV X-rays. Most irradiations were carried out using an SSD set up 100 cm, $10{\times}10\;cm^2$ field and 300 MU/min. The time dependence were measured at 10 minute intervals. The dose dependence were measured from 50 cGy to 600 cGy. The energy dependence was measured for nominal photon beam energies of 6, 15 MV and electron beam energies of 4-20 MeV. The dose rate dependence were also measured for dose rates of 100-1,000 MU/min. Finally, the PDD was measured by OSLDs and Ion-chamber. Results: The reproducibility of OSLD according to the Time flow was evaluated within ${\pm}2.5%$. The result of Linearity of OSLD, the dose was increased linearly up to about the 300 cGy and increased supralinearly above the 300 cGy. Energy and dose rate dependence of the response of OSL detectors were evaluated within ${\pm}2%$ and ${\pm}3%$. $PDD_{10}$ and PDD20 which were measured by OSLD was 66.7%, 38.4% and $PDD_{10}$ and $PDD_{20}$ which were measured by Ion-chamber was 66.6%, 38.3% Conclusion: As a result of analyzing characteration of OSLD, OSLD was evaluated within ${\pm}3%$ according to the change of the time, enregy and dose rate. The $PDD_{10}$ and $PDD_{20}$ are measured by OSLD and ion-chamber were evaluated within 0.3%. The OSL response is linear with a dose in the range 50~300 cGy. It was possible to repeat measurement many times and progress of the measurement of reading is easy. So the stability of the system and linear dose response relationship make it a good for dosimetry.

  • PDF

A Study of Characteristics of MicroLion Liquid Ionization Chamber for 6 MV Photon Beam (6 MV 광자빔에 대한 MicroLion 액체이온함의 특성 연구)

  • Choi, Sang-Hyoun;Huh, Hyun-Do;Kim, Seong-Hoon;Ji, Young-Hoon;Kim, Kum-Bae;Kim, Woo-Chul;Kim, Hun-Jeong;Shin, Dong-Oh;Kim, Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.216-223
    • /
    • 2011
  • Recently PTW developed a MicroLion liquid ionization chamber which is water_equivalent and has a small sensitive volume of $0.002cm^3$. The aim of this work is to investigate such dosimetric characteristics as dose linearity, dose rate dependency, spatial resolution, and output factors of the chamber for the external radiotherapy photon beam. The results were compared to those of Semiflex chamber, Pinpoint chamber and Diode chamber with the sensitive volumes of $0.125cm^3$, $0.03cm^3$ and $0.0025cm^3$, respectively and evaluated to be suitable for small fields. This study was performed in the 6MV photon energy from a Varian 2300 C/D linac accelerator and the MP3 water phantom (PTW, Freiburg) was used. Penumbras in the varios field sizes ranged from $0.5{\times}0.5cm^2$ to $10{\times}10cm^2$ were used to evaluate the spatial resolution. Output factors were measured in the field sizes of $0.5{\times}0.5$ to $40{\times}40cm^2$. Readings of the chamber was linearly proportional to dose. Dose rate dependency was measured from 100 MU/min to 600 MU/min, showed a maximum difference of 5.0%, and outputs decreased with dose rates. The spatial resolutions determined with comparing profiles for the field sizes of $0.5{\times}0.5cm^2$ to $10{\times}10cm^2$ agreed between every detector except the Semiflex chamber to within 2%. Outputs of detectors were compared to that of Semiflex chamber and showed good agreements within 2% for every chamber. This study shows that MicroLion chamber characterized by a high signal-to-noise ratio and water equivalence could be suitable for the small field dosimetry.

Commissionning of Dynamic Wedge Field Using Conventional Dosimetric Tools (선량 중첩 방식을 이용한 동적 배기 조사면의 특성 연구)

  • Yi Byong Yong;Nha Sang Kyun;Choi Eun Kyung;Kim Jong Hoon;Chang Hyesook;Kim Mi Hwa
    • Radiation Oncology Journal
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • Purpose : To collect beam data for dynamic wedge fields using conventional measurement tools without the multi-detector system, such as the linear diode detectors or ionization chambers. Materials and Methods : The accelerator CL 2100 C/D has two photon energies of 6MV and 15MV with dynamic wedge an91es of 15o, 30o, 45o and 60o. Wedge transmission factors, percentage depth doses(PDD's) and dose Profiles were measured. The measurements for wedge transmission factors are performed for field sizes ranging from $4\times4cm^2\;to\;20\times20cm^2$ in 1-2cm steps. Various rectangular field sizes are also measured for each photon energy of 6MV and 15MV, with the combination of each dynamic wedge angle of 15o 30o. 45o and 60o. These factors are compared to the calculated wedge factors using STT(Segmented Treatment Table) value. PDD's are measured with the film and the chamber in water Phantom for fixed square field. Converting parameters for film data to chamber data could be obtained from this procedure. The PDD's for dynamic wedged fields could be obtained from film dosimetry by using the converting parameters without using ionization chamber. Dose profiles are obtained from interpolation and STT weighted superposition of data through selected asymmetric static field measurement using ionization chamber. Results : The measured values of wedge transmission factors show good agreement to the calculated values The wedge factors of rectangular fields for constant V-field were equal to those of square fields The differences between open fields' PDDs and those from dynamic fields are insignificant. Dose profiles from superposition method showed acceptable range of accuracy(maximum 2% error) when we compare to those from film dosimetry. Conclusion : The results from this superposition method showed that commissionning of dynamic wedge could be done with conventional dosimetric tools such as Point detector system and film dosimetry winthin maximum 2% error range of accuracy.

  • PDF

Assessment of Natural Radiation Exposure by Means of Gamma-Ray Spectrometry and Thermoluminescence Dosimetry (감마선분광분석(線分光分析) 및 열형광검출법(熱螢光檢出法)에 의한 자연방사선(自然放射線)의 선량측정연구(線量測定硏究))

  • Jun, Jae-Shik;Oh, Hi-Peel;Choi, Chul-Kyu;Oh, Heon-Jin;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.2
    • /
    • pp.96-108
    • /
    • 1985
  • A study for the assessment of natural environmental radiation exposure at a flat and open field of about $10,000m^2$ in area in CNU Daeduk campus has been carried out by means of gamma-ray scintillation spectrometry and thermoluminescence dosimetry for one year period of time from October 1984. The detectors used were 3'${\phi}{\times}$3' NaI(T1) and two different types of LiF TLD, namely, chip sealed in plastic sheet which tightly pressed on two open holes of a metal plate and Teflon disk. Three 24-hour cycles of in-situ spectrometry, and two 3-month and one 1-month cycles of field TL dosimetry were performed. All the spectra measured were converted into exposure rate by means of G(E) opertaion, and therefrom exposure rate due to terrestrial component of environmental radiation was figured out. Exposure rate determined by the spectrometry was, on average, $(10.54{\pm}2.96){\mu}R/hr$, and the rates of $(12.0{\pm}3.4){\mu}R/hr$ and $(11.0{\pm}3.6){\mu}R/hr$ were obtained from chip and disk TLD, respectively. Fluctuations in diurnal variation of the exposure rate measured by the spectrometry were noticeable sometime even in a single cycle of 24 hours. It is concluded that appropriately combined use of TLD with iu-sitn gamma-ray spectrometry system can give more accurate and precise measure of environmental radiation exposure, and further study for more adequate and sensitive TLD for environmental dosimetry, including improvement and elevation of accuracy in data assessment through inter-laboratory or international intercomparison is necessary.

  • PDF