• Title/Summary/Keyword: energy detection

Search Result 1,978, Processing Time 0.035 seconds

A Scheme for Energy Detection Based Backscatter Signal Detection for Switching Antenna (안테나 스위칭을 위한 에너지 검파 기반의 백스캐터 신호 검출 기법)

  • Sim, Isaac;Hwang, Yu Min;Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.18-22
    • /
    • 2016
  • In this paper, we proposed a scheme for signal detection based on average of detected energy of frequencies for backscatter communications. We applied this scheme on the bistatic backscatter radio architecture for RF energy harvesting. Tags reflected entire RF signals on a same bandwidth when transmitted energy signals. Receivers can optimal switching antenna by this scheme. Simulation results show that the proposed scheme can precisely detect signals from tag with properly calculated parameters.

Detection of Pulmonary Nodules' Shadow on Chest X-ray Image (흉부 X선 영상에 있어서 폐 종류 음영의 검출)

  • Kim, Eung-Kyeu;Lee, Do-Kyeom
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.293-294
    • /
    • 2007
  • The purpose of this study is prove the effectiveness of an energy subtraction image for the detection of pulmonary nodules and the effectiveness of multi-resolutional filter on an energy subtraction image to detect pulmonary nodules. Also we study influential factors to the accuracy of detection of pulmonary nodules from viewpoints of types of images, types of digital filters and types of evaluation methods. As one type of images, we select an energy subtraction image, which removes bones such as ribs from the conventional X-ray image by utilizing the difference of X-ray absorption ratios at different energy between bones and soft tissue. Here we select two evaluation methods and make clear the effectiveness of multi-resolutional filter on an energy subtraction image.

  • PDF

Indoor Zone Detection based on Bluetooth Low Energy (블루투스를 이용한 실내 영역 결정 방법)

  • Frisancho, Jorge;Lee, Jemin;Kim, Hyungshin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.279-281
    • /
    • 2015
  • Location awareness is an important capability for mobile-based indoor services. Those indoor services have motivated the implementation of methods that need high computational load cost and complex mechanisms for positioning prediction. These mechanisms, such as opportunistic sensing and machine learning, require more energy consumption to achieve accuracy. In this paper, we propose the Bluetooth Low Energy indoor zone detection (BLEIZOD) technique. This method exploits the concept of proximity zone to reduce the load cost and complexity. Our proposed method implements the received signal strength indicator (RSSI) function more effectively to gain accuracy and reduce energy consumption.

  • PDF

An Experimental Study on Fault Detection in the HVAC Simulator (공조 시뮬레이터를 이용한 고장진단 실험 연구)

  • Tae, Choon-Seob;Yang, Hoon-Cheul;Cho, Soo;Jang, Cheol-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.807-813
    • /
    • 2006
  • The objective of this study is to develop a rule-based fault detection algorithm and an experimental verification using an artificial air handling unit. To develop an analytical algorithm which precisely detects a tendency of faulty component, energy equations at each control volume of AHU were applied. An experimental verification was conducted on the HVAC simulator. The rule based FDD algorithm isolated a faulted sensor from HVAC components in summer and winter conditions.

  • PDF

A Sliding Window-Based Energy Detection Method under Noise Uncertainty for Cognitive Radio Systems (Cognitive Radio 시스템에서 불확실한 잡음 전력을 고려한 슬라이딩 윈도우 기반 에너지 검출 기법)

  • Kim, Young-Min;Sohn, Sung-Hwan;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1105-1116
    • /
    • 2008
  • Cognitive radio is one of the most effective techniques to improve the spectrum utilization efficiency. To implement the cognitive radio, spectrum sensing is considered as the key functionality because only counting on it, can the secondary users identify the spectrum holes and utilize them efficiently without causing interference to primary users. Generally, there are several spectrum sensing methods; the most common and simplest method is energy detection. However, the conventional energy detection has some disadvantages, which are caused by noise, especially, uncertain noise power leads to degradation of energy detector. In this paper, to solve this problem, we proposed sliding window-based energy detection method which can devide the frequency band of primary signal and noise using sliding window to estimate the power of primary user without the noise effect and achieve the better performance. It can calculate the energy of primary user only and can detect the primary signal. The simulation result shows that our proposed method outperforms conventional one.

Preliminary Research of CZT Based PET System Development in KAERI

  • Jo, Woo Jin;Jeong, Manhee;Kim, Han Soo;Kim, Sang Yeol;Ha, Jang Ho
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Background: For positron emission tomography (PET) application, cadmium zinc telluride (CZT) has been investigated by several institutes to replace detectors from a conventional system using photomultipliers or Silicon-photomultipliers (SiPMs). The spatial and energy resolution in using CZT can be superior to current scintillator-based state-of-the-art PET detectors. CZT has been under development for several years at the Korea Atomic Energy Research Institute (KAERI) to provide a high performance gamma ray detection, which needs a single crystallinity, a good uniformity, a high stopping power, and a wide band gap. Materials and Methods: Before applying our own grown CZT detectors in the prototype PET system, we investigated preliminary research with a developed discrete type data acquisition (DAQ) system for coincident events at 128 anode pixels and two common cathodes of two CZT detectors from Redlen. Each detector has a $19.4{\times}19.4{\times}6mm^3$ volume size with a 2.2 mm anode pixel pitch. Discrete amplifiers consist of a preamplifier with a gain of $8mV{\cdot}fC^{-1}$ and noise of 55 equivalent noise charge (ENC), a $CR-RC^4$ shaping amplifier with a $5{\mu}s$ peak time, and an analog-to-digital converter (ADC) driver. The DAQ system has 65 mega-sample per second flash ADC, a self and external trigger, and a USB 3.0 interface. Results and Discussion: Characteristics such as the current-to-voltage curve, energy resolution, and electron mobility life-time products for CZT detectors are investigated. In addition, preliminary results of gamma ray imaging using 511 keV of a $^{22}Na$ gamma ray source were obtained. Conclusion: In this study, the DAQ system with a CZT radiation sensor was successfully developed and a PET image was acquired by two sets of the developed DAQ system.

Separation Inverter Noise and Detection of DC Series Arc in PV System Based on Discrete Wavelet Transform and High Frequency Noise Component Analysis (DWT 및 고주파 노이즈 성분 분석을 이용한 PV 시스템 인버터 노이즈 구분 및 직렬 아크 검출)

  • Ahn, Jae-Beom;Jo, Hyun-Bin;Lee, Jin-Han;Cho, Chan-Gi;Lee, Ki-Duk;Lee, Jin;Lim, Seung-Beom;Ryo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.271-276
    • /
    • 2021
  • Arc fault detector based on multilevel DWT with analysis of high-frequency noise components over 100 kHz is proposed in this study to improve the performance in detecting serial arcs and distinguishing them from inverter noise in PV systems. PV inverters generally operate at a frequency range of 20-50 kHz for switching operation and maximum power tracking control, and the effect of these frequency components on the signal for arc detection leads to negative arc detection. High-speed ADC and multilevel DWT are used in this study to analyze frequency components above 100 kHz. Such high frequency components are less influenced by inverter noise and utilized to detect as well as separate DC series arc from inverter noise. Arc detectors identify the input current of PV inverters using a Rogowski coil. The sensed signal is filtered, amplified, and used in 800kSPS ADC and DWT analysis and arc occurrence determination in DSP. An arc detection simulation facility in UL1699B was constructed and AFD tests the proposed detector were conducted to verify the performance of arc detection and performance of distinction of the negative arc. The satisfactory performance of the arc detector meets the standard of arc detection and extinguishing time of UL1699B with an arc detection time of approximately 0.11 seconds.

The Application of a Pulsed Photostimulated Luminescence (PPSL) Method for the Detection of Irradiated Foodstuffs

  • Yi, Sang-Duk;Yang, Jae-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.136-141
    • /
    • 2000
  • The properties of pulsed photostimulated luminescence (PPSL) were measured to use as basis data for the detection of irradiated foodstuffs (34 different foods). Samples were packed in polyethylene bags and irradiated at 1, 5, and 10 kGy with a dose rate of 10 kGy/h. The samples irradiated were introduced in the sample chamber without other preparation and measured PPSL photon counts for 60 and 120 s. The PPSL photo counts of the irradiated samples were higher than the unirradiated, increased with increasing irradiation dose, and showed a good relationship between irradiation doses and photon counts in a multinomial expression. These results suggest that the detection of irradiated foodstuffs was possible by PPSL. Therefore, PPSL can be proposed as the method for the detection of irradiated foodstuffs.

  • PDF

Determination of Minimum Detectable Activity in Environmental Samples (환경방사능 측정에서의 검출한계치의 정량적 고찰 및 최소검출방사능 농도 계산)

  • Lee, Myung-Ho;Shin, Hyun-Sang;Hong, Kwang-Hee;Cho, Young-Hyun;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.3
    • /
    • pp.171-184
    • /
    • 1999
  • In this paper, using statistical theory the basic concepts and the formulars of lower limit of detection were deasribed. Assuming that risks of 5% are acceptable (95% confidence level), lower limits of detection were calculated on the measuring apparatus for alpha, beta and gamma nuclides. Also, on the basis concepts of lower limit of detection, the MDA values were calculated for the radionuclides detected easily in the environment. These results make it possible to evaluate confidence limits on the radioanalytical results in the environmental sample.

  • PDF

Improved fast neutron detection using CNN-based pulse shape discrimination

  • Seonkwang Yoon;Chaehun Lee;Hee Seo;Ho-Dong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3925-3934
    • /
    • 2023
  • The importance of fast neutron detection for nuclear safeguards purposes has increased due to its potential advantages such as reasonable cost and higher precision for larger sample masses of nuclear materials. Pulse-shape discrimination (PSD) is inevitably used to discriminate neutron- and gamma-ray- induced signals from organic scintillators of very high gamma sensitivity. The light output (LO) threshold corresponding to several MeV of recoiled proton energy could be necessary to achieve fine PSD performance. However, this leads to neutron count losses and possible distortion of results obtained by neutron multiplicity counting (NMC)-based nuclear material accountancy (NMA). Moreover, conventional PSD techniques are not effective for counting of neutrons in a high-gamma-ray environment, even under a sufficiently high LO threshold. In the present work, PSD performance (figure-of-merit, FOM) according to LO bands was confirmed using a conventional charge comparison method (CCM) and compared with results obtained by convolution neural network (CNN)-based PSD algorithms. Also, it was attempted, for the first time ever, to reject fake neutron signals from distorted PSD regions where neutron-induced signals are normally detected. The overall results indicated that higher neutron detection efficiency with better accuracy could be achieved via CNN-based PSD algorithms.