• Title/Summary/Keyword: energy degradation

Search Result 1,732, Processing Time 0.028 seconds

Kinetics of Thermal Degradation of Polypropylene/Nanoclay/Wood Flour Nanocomposites

  • Mohan, D. Jagan;Lee, Sun-Young;Kang, In-Aeh;Doh, Geum-Hyun;Park, Byung-Dae;Wu, Qinglin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.278-286
    • /
    • 2007
  • As a part of enhancing the performance of wood-plastic composites (WPC), polypropylene (PP)/ nanoclay (NC)/ wood flour (WF) nanocomposites were prepared using melt blending and injection molding process to evaluate their thermal stability. Thermogravimetric analysis (TGA) was employed to investigate thermal degradation kinetics of the nanocomposites both dynamic and isothermal conditions. Dynamic scans of the TGA showed an increased thermal stability of the nanocomposites at moderate wood flour concentrations (up to 20 phr, percentage based on hundred percent resin) while it decreased with the addition of 30 phr wood flour. The activation energy $(E_a)$ of thermal degradation of nanocomposites increased when nanoclay was added and the concentration of wood flour increased. Different equations were used to evaluate isothermal degradation kinetics using the rate of thermal degradation of the composites, expressed as weight loss (%) from their isothermal TGA curves. Degradation occurred at faster rate in the initial stages of about 60 min., and then proceeded in a gradual manner. However, nanocomposites with wood flour of 30 phr heated at $300^{\circ}C$ showed a drastic difference in their degradation behavior, and reached almost a complete decomposition after 40 min. of the isothermal heating. The degree of decomposition was greater at higher temperatures, and the residual weight of isothermal degradation of nanocomposites greatly varied from about 10 to 90%, depending on isothermal temperatures. The isothermal degradation of nanocomposites also increased their thermal stability with the addition of 1 phr nanoclay and of wood flour up to 20 phr. But, the degradation of PP100/NC1/MAPP3/WF30 nanocomposites with 30 phr wood flour occurs at a faster rate compared to those of the others, indicating a decrease in their thermal stability.

Performance Degradation of Mea with Cation Contamination in Polymer Electrolyte Membrane Water Electrolysis (고분자 전해질막 수전해 막전극접합체의 양이온 오염에 따른 성능 저하)

  • JUNG, HYEYOUNG;CHOI, NAKHEON;IM, SUHYUN;YOON, DAEJIN;MOON, SANGBONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • Proton Exchange Membrane Water Electrolysis (PEMWE) is one of the most popular and widely used methods for hydrogen production. PEMWE contributes to eco-friendly system via its energy storage system application, hence making it environmentally friendly to use. However, its main drawback is contamination of proton exchange membrane during water electrolysis. Existing cation such as magnesium, calcium and the likes are the cause for membrane contamination. As a result, the cation contamination give rise to degradation of performance of electrolysis and the reverse electrolysis is effective method to remove cation.

Steam Reforming of Biogas on Nickel Fiber Mat Catalysts (니켈 섬유 매트 촉매를 사용한 바이오가스 수증기개질 반응)

  • Bui, Quynh Thi Phuong;Kim, Yong-Min;Yoon, Chang-Won;Nam, Suk-Woo
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.252-258
    • /
    • 2011
  • Nickel fiber mat was investigated as a potential structured catalyst for steam reforming of biogas in the temperature range of $600-700^{\circ}C$. The activity of as-received catalyst was very low owing to the smooth surface of fibers. Pretreatment of the catalyst by oxidation followed by reduction under methane partial oxidation condition significantly improved the catalytic activity, although degradation of the activity was found during the reaction due to oxidation and sintering. This deactivation was retarded by supplying additional hydrogen in the inlet gases or by coating $CeO_2$ over the catalyst surfaces.

Feeder Pipe Inspection Robot with an Inch-Worm Mechanism Using Pneumatic Actuators

  • Choi, Chang-Hwan;Jung, Seung-Ho;Kim, Seung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.87-95
    • /
    • 2006
  • The outlet feeder pipe thinning in a PHWR (Pressurized Heavy Water Reactor) is caused by a high pressure steam flow inside the pipe, which is a well known degradation mechanism called a FAC (Flow Assisted Corrosion). In order to monitor the degradation, the thickness of the outlet bends close to the exit of the pressure tube should be measured and analyzed at every official overhaul. This paper describes a mobile feeder pipe inspection robot that can minimize the irradiation dose to human workers by automating the measurement process. The robot can move by itself on the feeder pipe by using an inch worm mechanism, which is constructed by two gripper bodies that can fix the robot body on to the pipe, one extendable and contractible actuator, and a rotation actuator connected to the two gripper bodies to move forward and backward, and to rotate in a circumferential direction.

Behavior of geopolymer and conventional concrete beam column joints under reverse cyclic loading

  • Raj, S. Deepa;Ganesan, N.;Abraham, Ruby;Raju, Anumol
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.161-172
    • /
    • 2016
  • An experimental investigation was carried out on the strength and behavior plain and fiber reinforced geopolymer concrete beam column joints and the results were compared with plain and steel fiber reinforced conventional concrete beam column joints. The volume fraction of fibers used was 0.5%. A total of six Geopolymer concrete joints and four conventional concrete joints were cast and tested under reversed cyclic loading to evaluate the performance of the joints. First crack load, ultimate load, energy absorption capacity, energy dissipation capacity stiffness degradation and moment-curvature relation were evaluated from the test results. The comparison of test results revealed that the strength and behavior of plain and fiber reinforced geopolymer concrete beam column joints are marginally better than corresponding conventional concrete beam column joints.

Role of fibers on the performance of geopolymer concrete exterior beam column joints

  • Raj, S. Deepa;Ganesan, N.;Abraham, Ruby
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.115-123
    • /
    • 2020
  • The performance of steel fiber reinforced geopolymer concrete beam column joints under cyclic loading was investigated. The volume fraction of fibers considered were 0.25% (19.62 kg/㎥), 0.5% (39.24 kg/㎥), 0.75% (58.86 kg/㎥) and 1% (78.48 kg/㎥). A total of fifteen specimens were prepared and tested under reverse cyclic loading. Test results were analyzed with respect to first crack load, ultimate load, energy absorption capacity, energy dissipation capacity, stiffness degradation and load deflection behavior. Test results revealed that the addition of steel fibers enhanced the performance of geopolymer concrete beam column joints significantly. The joints were analyzed using finite element software ANSYS. The analytical results were found to compare satisfactorily with the experimental values.

Evaluation of Concrete Degradation Under Disposal Environment

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.260-268
    • /
    • 1997
  • The effects of three mechanisms, calcium depletion, sulphate and carbonate penetration, on the concrete degradation have been studied. The shrinking core model (SCM) and the HYDROGEOC. HEM (HGC) model have been applied to evaluate how fast the mechanisms proceed. The SCM is an analytical approximation model and the HGC is a numerical mass transport model coupled with chemical reaction. The SCM leads to more conservative results than the HGC, and turns out to be very useful in the viewpoint of simplicity and conservatism. During 300 years, calcium has been depleted within 10 cm from the concrete outer surface, and sulphate has penetrated less than 13.5 cm into the concrete. Carbonate has not penetrated own 7 cm into the concrete in contact with the bentonite, and, furthermore, its penetration into the concrete with the groundwater is negligible. Conclusively, the concrete is expected to maintain its integrity for at least 300 years that are regarded as institutional control period of intermediate and low-level radioactive waste repository.

  • PDF

Ionizing Radiation Effect on the Carbohydrate Moiety of Chicken Ovomucoid (계란 ovomucoid의 탄수화물 부분에 미치는 이온화방사선의 영향)

  • Lee, Young-Keun;Kim, Jin-Kyu;Kim, Jae-Sung;Song, Hi-Sup;Charoen, Saovapong;Amornraksa, Kitti
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.23-27
    • /
    • 1997
  • Radiation effects on carbohydrate moiety of chicken ovomucoid, a protease inhibitor as a typical allergenic glycoprotein of egg white, was observed. The trypsin inhibitory activity of chicken ovomucoid decreased exponentially and the inactivation was more significant irradiated in $N_2$ than in $O_2$. From the protein blotting, radiation caused protein degradation in $O_2$ and protein aggregation also in $N_2$. The patterns of carbohydrate blotting were also similar with that of protein blotting. Sugar chains in low molecular weight fraction (MW<5,000) were released by radiation and those in $O_2$ were higher than in $N_2$. From the HPLC patterns of the degradation of sugar chains, all peaks of oligosaccharides have the tendency to decrease with the increase of radiation dose and more remarkable in $O_2$ than in $N_2$. These results suggest that ionising radiation could cause the overall conformational changes of ovomucoid by the degradation and release of oligosaccharides.

  • PDF

VARIATION OF NEUTRON MODERATING POWER ON HDPE BY GAMMA RADIATION

  • Park, Kwang-June;Ju, June-Sik;Kang, Hee-Young;Shin, Hee-Sung;Kim, Ho-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • High density polyethylene (HDPE) is degraded due to a radiation-induced oxidation when it is used as a neutron moderator in a neutron counter for a nuclear material accounting of spent fuels. The HDPE exposed to the gamma-ray emitted from the fission products in a spent nuclear fuel results in a radiation-induced degradation which changes its original molecular structure to others. So a neutron moderating power variation of HDPE, irradiated by a gamma radiation, was investigated in this work. Five HDPE moderator structures were exposed to the gamma radiation emitted from a $^{60}Co$ source to a level of $10^5-10^9$ rad to compare their post-irradiation properties. As a result of the neutron measurement test with 5 irradiated HDPE structures and a neutron measuring system, it was confirmed that the neutron moderating power for the $10^5$ rad irradiated HDPE moderator revealed the largest decrease when the un-irradiated pure one was used as a reference. It implies that a neutron moderating power variation of HDPE is not directly proportional to the integrated gamma dose rate. To clarify the cause of these changes, some techniques such as a FTIR, an element analysis and a densitometry were employed. As a result of these analyses, it was confirmed that the molecular structure of the gamma irradiated HDPEs had partially changed to others, and the contents of hydrogen and oxygen had varied during the process of a radiation-induced degradation. The mechanism of these changes cannot be explained in detail at present, and thus need further study.

Study on the Durability Characteristics of the PEM Fuel Cells having Gas Diffusion Layer with Different Micro Porous Layer Penetration Thicknesses (기체확산층의 미세다공층 침투 깊이에 따른 고분자 전해질형 연료전지의 내구성능 저하 분석에 관한 연구)

  • Park, Jaeman;Oh, Hwanyeong;Cho, Junhyun;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.216-222
    • /
    • 2013
  • Durability characteristics of Gas Diffusion Layer(GDL) is one of the important issues for accomplishing commercialization of Proton Exchange Membrane Fuel Cell(PEMFC). It is strongly related to the performances of PEMFC because one of the main functions of GDL is to work as a path of fuel, air and water. When the GDL does not work on their proposed functions due to the degradation of durability, mass transfer in PEMFC is disturbed and it might cause the flooding phenomenon. Thus, investigating the durability of GDL is important and understanding the GDL degradation process is needed. In this study, electrochemical degradation with carbon corrosion is introduced. The carbon corrosion experiment is carried out with GDLs which have different MPL penetration thicknesses. After the experiment, the amount of degradation of GDL is measured with various properties of GDL such as weight, thickness and performance of the PEMFC. The degraded GDL shows loss of their properties.