• Title/Summary/Keyword: energy consuming rate

Search Result 60, Processing Time 0.026 seconds

A study on the saving of energy consumption load using electrical heat control system (전기적 열제어 시스템을 사용한 에너지 소비량 감소에 관한 연구)

  • Han, Kyu Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • Most of steam power plant in Korea are heating the feed water system to prevent freezing water flowing in the pipe in winter time. The heating system is operated whenever the ambient temperature around the power plant area below 5 degree Centigrade. But this kind of heat supplying system cause a lot of energy consuming. If we think about the method that the temperature of the each pipe is controled by attaching the temperature measuring sensor like RTD sensor and heat is supplied only when the outer surface temperature of the pipe is under 5 degree Centigrade, then we can save a plenty of energy. In this study, the computer program package for simulation is used to compare the energy consumption load of both systems. Energy saving rate is calculated for the location of Youngweol area using the data of weather station in winter season, especially the January' severe weather data is analyzed for comparison. Various convection heat transfer coefficients for the ambient air and the flowing water inside the pipe was used for the accurate calculation. And also the various initial flowing water temperature was used for the system. Steady state analysis is done previously to approximate the result before the simulation. The result shows that the temperature control system using RTD sensor represents the high energy saving effect which is more than 90% of energy saving rate. Even in the severe January weather condition, the energy saving rate is almost 60%.

Optimization of refrigerator machine room for energy saving (냉장고 기계실 유로 최적화를 통한 소비 전력 저감)

  • 김영국;한병윤;김재열;김태훈;이연원;김남식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.101-106
    • /
    • 2002
  • In the Refrigeration and air conditioning industrial circles, refrigerator is demands a high degree of efficiency due to the Environmental Preservation Law. Many researchers are working on factors to improve the efficiency of the refrigerator In this paper, a study of the factors on the decrease of electric power consumption, several experiments are performed to improve the fluid flow in the refrigerator machine room. As a results, average temperatures of compressor and condenser are reduced 3.1$^{\circ}C$, 2.$0^{\circ}C$. The consuming electric power rate is reduced 0.7kWh/month.

  • PDF

Modeling of Hydrogen Recirculation System for Fuel Cell Vehicle (수소 연료전지차의 재순환시스템 모델링 연구)

  • Kim, Jae-Hoon;Noh, Young-Gyu;Jeon, Ui-Sik;Lee, Jong-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.481-487
    • /
    • 2011
  • A fuel cell vehicle using a polymer electrolyte membrane fuel cell (PEM FC) as power source produces electric power by consuming the fuel, hydrogen. The unconsumed hydrogen is recirculated and reused to gain higer stack efficiency and to maintain the humidity in the anode side of the stack. So it is needed considering fuel efficiency to recirculated hydrogen. In this study, the indirect hydrogen recirculation flow rate measurement method for fuel cell vehicle is presented. By modeling of a convergent nozzle ejector and a hydrogen recirculation blower for the hydrogen recirculation of a PEM FC, the hydrogen recirculation flow rate was calculated by means of the mass balance and heat balance at Anode In/Outlet.

An Operations Model for Home Energy Management System Considering an Energy Storage System and Consumer Utility in a Smart Grid

  • Juhyeon Kang;Yongma Moon
    • Asia pacific journal of information systems
    • /
    • v.27 no.2
    • /
    • pp.99-125
    • /
    • 2017
  • In this study, we propose an operations model to automate a home energy management system (HEMS) that utilizes an energy storage system (ESS) in consideration of consumer utility. Most previous studies focused on the system for the profits obtained from trading charged energy using large-scale ESS. By contrast, the present study focuses on constructing a home-level energy management system that considers consumer's utility over energy consumption. Depending on personal preference, some residential consumers may prefer consuming additional energy to earn increased profits through price arbitrage and vice versa. However, the current system could not yet reflect on this aspect. Thus, we develop an operations model for HEMS that could automatically control energy consumption while considering the level of consumer's preference and the economic benefits of using an ESS. The results of simulations using a dataset of the Korean market show that an operations policy of charging and discharging can be changed depending on consumer's utility. The impact of this policy is not ignorable. Moreover, the technical specifications of ESS, such as self-discharge rate and round-trip efficiency, can affect the operations policy and automation of HEMS.

The Comparison of the 3D graph for the energy-equal of LEACH-Mobile

  • Jang, Seong Pil;Jung, Kye-Dong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.57-67
    • /
    • 2017
  • In this paper, propose an algorithm to improve network lifetime by equally consuming energy of LEACH - Mobile sensor nodes. LEACH is one of energy efficient protocols. However, we did not consider the mobility of nodes. Therefore, the transmission reception success rate of the moving data is reduced. LEACH-Mobile is a protocol that has improved the drawbacks of these LEACH. However, since LEACH-Mobile has a larger number of data packets and consumes more energy than LEACH, it has a disadvantage that the lifetime of the network is short. In order to improvement these disadvantage, Based on the average of the remaining energy of the node, cluster heads are elected with a number of nodes whose energies are larger than the average of the remaining energy from the member nodes. After that, by trying to increase the lifetime of the network by equalizing the remaining energy. In to confirm whether improve the lifetime of the network, In this paper, the number of nodes and the position of all nodes are varied for each specific round, the rest energy is equalized, and the algorithm which uniformly selected the cluster head is compared with LEACH.

Comparison of Calorie Intake and Satiety Rate by Different Energy Density Level of Kimbab (에너지 밀도 차이에 따른 김밥의 섭취량 및 포만도 비교)

  • Chang, Un-Jae;Jun, Seung-Chol;Park, Hyo-Jung;Hong, In-Sun;Jung, Eun-Young
    • Journal of the Korean Dietetic Association
    • /
    • v.14 no.4
    • /
    • pp.396-403
    • /
    • 2008
  • We attempted to determine whether energy density would influence calorie intake via cognitive cues, as reflected by satiety. This experiment was designed using two different energy density levels of Kimbab: normal Kimbab (1.6 kcal/g) vs low-density Kimbab (1.0 kcal/g). 26 female college students participated in this study. The subjects ate Kimbab in the lab once a week for 2 weeks. Each week at noon, they were served 24 units of either normal or low-density Kimbab, and we determined the units, grams, and calories of the real & cognitive intake of Kimbab, and also analyzed the satiety rate after eating Kimbab. Our results demonstrated that the real calorie intake from the low-density Kimbab was significantly lower than that of the normal Kimbab (290.3 kcal vs 474.4 kcal, p<0.001), but we noted no significant differences in the units and grams of real and cognitive intake between the normal and low-density Kimbab. However, despite consuming 39% lower caloric intake, the subjects reported similar levels of satiety rates with the two different density levels of Kimbab, as they did not perceive themselves to have eaten more normal Kimbab than low-density Kimbab. Thus, this study provides evidence that the energy density of food is a crucial determinant of caloric intake, and supports the notion that the consumption of low energy-dense foods may result in a reduction of caloric intake without altering satiety.

  • PDF

Size and Shape Optimization of the Oil Pump for Fuel Consuming Reduction (엔진 연비 향상을 위한 오일펌프 사이즈/형상 최적화)

  • Jo, Sok-Hyun;Nam, Kyung-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2008
  • Generally block imbedded type oil pump is adopted to make a small engine. In this paper 1D/3D numerical simulations were conducted to reduce energy consumption of the block imbedded type oil pump. At each stage of engine development we have estimated the oil flow rate and pressure to optimize oil pump sizes by using the 1D system analysis and then accomplished 3D CFD(Computational Fluid Dynamics) simulations to optimize oil pump shapes including inlet/outlet port. As a result, the energy consumption of oil pump has been reduced to nearly 27% and the engine fuel consumption to $1{\sim}1.5%$.

Influence of the Size of the Spoon on the Eating rate, Energy Intake and the Satiety Levels of Female College Students (숟가락 크기의 감소가 여대생의 식사속도, 음식섭취량과 포만도에 미치는 영향)

  • Hong, Yang Hee;Kim, Young Suk;Kwon, Hyun Jung;Chang, Do Seok;Kim, Dong Geon;Chang, Un Jae
    • Korean Journal of Community Nutrition
    • /
    • v.20 no.5
    • /
    • pp.375-382
    • /
    • 2015
  • Objectives: This study examined the influence of different sizes of spoons (normal spoon, 8.3 cc vs small spoon, 4 cc) on eating rate, energy intake and the satiety levels of female college students. Methods: Twenty four healthy female college students participated in this study once a week for 2 weeks. Two hundred ten grams of cooked rice and 250 g of beef shank soup with a normal spoon and same amount of rice and soup with a small size spoon were served to the same participants over two consecutive weeks. After each lunch, the eating rate, energy intake, and the satiety levels were measured. Results: Results showed that the subjects who were using a small spoon ate less beef shank soup (149.0 kcal) (p < 0.01) and had lower total energy intake (423.3 kcal) (p < 0.05) than using a normal spoon (178.7 and 461.1 kcal, respectively). Also, the meal time (15.7 min) (p < 0.01), a serving per one spoon (8.6 g) (p < 0.001), and eating rate (27.9 g/min) (p < 0.001) of those who used a small spoon were significantly different than that of those who used a normal spoon (13.6 min, 12.5 g and 35.7 g/min, respectively). However, despite consuming less energy at lunch, the level of satiety after eating from the small spoon was not significantly different from the normal spoon immediately after, 1 hour after and 2 hour after lunch. Conclusions: Our results revealed that students were able to control their eating rate by using a small spoon and they could feel full enough even though they eat less. In conclusion, eating rate decrease by using a small spoon may play an important role in food intake.

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

Study on the liquefaction performance characteristic of $CO_2$ liquefaction cycle ($CO_2$ 액화 사이클의 액화 성능 특성에 관한 연구)

  • Song, Chan-Ho;Lee, Kong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1312-1316
    • /
    • 2009
  • Growing interest in $CO_2$ capturing from industrial processes and storage in underground formations is emerging from commitments in reducing $CO_2$ emissions manifested in the Kyoto Protocol. In this paper, $CO_2$ liquefaction system is treated in focus of liquefaction efficiency & production rate. Presently $CO_2$ is transported in ships or trucks at a pressure of 14-20 bar. Considering this, the liquefaction pressures of 20, 15, 6.5 bar are selected. Compressor work and cooling capacity are calculated and compared. In order to investigate the effect of intercooling, the compressed gas after compressor work is cooled by ambient air or seawater. In case of applying the intercooling to the system, consuming energy can be saved larger than 20%. In the lower liquefaction pressure, the more $CO_2$ can be obtained due to higher density. In the liquefaction pressure of 6.5 bar, its $CO_2$ production is about 35% higher than that of the system with the liquefaction pressure, 20 bar.

  • PDF