• 제목/요약/키워드: energy change ratio

검색결과 720건 처리시간 0.028초

재생증발식 냉방기를 이용한 환기 냉방시스템의 성능해석 (Performance Simulation of a Ventilation System Adopting a Regenerative Evaporative Cooler)

  • 장영수;이대영
    • 설비공학논문집
    • /
    • 제23권1호
    • /
    • pp.8-15
    • /
    • 2011
  • Cooling load reduction was analysed of a ventilation system adopting a regenerative evaporative cooler. The regenerative evaporative cooler is a kind of indirect evaporative cooler which cools the air down to its inlet dewpoint temperature in principle without change in the humidity ratio. The regenerative evaporative cooler was found able to cool the ventilation air to $18{\sim}21^{\circ}C$ when the outdoor condition ranges $25{\sim}35^{\circ}C$ and 0.01~0.02 kg/kg. When the outdoor humidity ratio is lower than 0.018 kg/kg, the regenerative evaporative cooler was found to provide cooling performance enough to compensate the ventilation load completely and to supply additional cooling as well. Energy simulation during the summer was carried out for a typical office building with the ventilation system using the regenerative evaporative cooler. The results showed that the seasonal cooling load can be reduced by about 40% by applying the regenerative evaporative cooler as a ventilation conditioner. The reduction was found to increase as the outdoor temperature increases and the outdoor humidity ratio decreases.

Bi-S 쾌삭강의 칩생성특성 (Chip Forming Characteristics of Bi-S Free Machining Steel)

  • 이영문
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.351-356
    • /
    • 1999
  • In this study, the characteristics of chip formation of the cold drawn Bi-S free machining steels were assessed. And for comparison, those of the cold drawn Pb-S free machining steel, the hot rolled low carbon steel which has MnS as free machining inclusions and the conventional steels were also investigated. During chip formation, the cold drawn free machining steels show relatively little change in thickness and width of chip compare to those of the conventional carbon steels. And a single parameter which indicates the degree of deformation during chip formation, 'chip cross-section area ratio' is introduced. The chip cross-section area. The variational patterns of cross-section area is divided by undeformed chip cross-section area. The variational patterns of the chip cross-section area ratio of the materials cut are similar to those of the shear strain values. The shear stress, however, seems to be dependent on the carbon content of the materials. The cold drawn BiS and Pb-S steels show nearly the same chip forming behaviors and the energy consumed during chip formation is almost same. A low carbon steel without free machining aids shows poor chip breakability due to its high ductility. By introducing a small amount of non-metallic inclusions such as MnS, Bi, Pb or merely increasing carbon content the chip breakability improves significantly.

  • PDF

도시화에 따른 건조환경이 하절기 광주시 외부공간의 열환경에 미치는 영향에 대한 연구 (The Impacts of Built Environmental Features on the Land Surface Temperatures for the Heat Wave Seasons in Gwangju, South Korea)

  • 홍성운;양동우;오병철
    • 한국태양에너지학회 논문집
    • /
    • 제39권6호
    • /
    • pp.67-82
    • /
    • 2019
  • This study aims to examine the impacts of built environmental features on the nocturnal and diurnal temperatures during the heat wave season in Gwangju, Korea. Built environmental measures are summarized at micro-scale level, such as 50 meters and 100 meters from temperature monitoring spots. Regressing the built environment on nocturnal and diurnal temperatures, we estimate how the artificial constructs contribute to temperature either day and night times. We found that impervious surface ratio is positively and negatively associated with nocturnal and diurnal temperatures, respectively. Buildings and structures tend to construct high thermal mass and absorb heat during day time and emit it for the night time. This property contributes to the nocturnal temperature model. On the other hand, urban areas with more vertical structure tend to block sun radiation more than rural, and it is more likely to find the negative relationship between impervious surface ratio and the diurnal temperatures.

Effects of oral caffeine and capsaicin administration on energy expenditure and energy substrates utilization in resting rats

  • Kim, Jisu;Jeon, Yerim;Hwang, Hyejung;Suh, Heajung;Lim, Kiwon
    • 운동영양학회지
    • /
    • 제15권4호
    • /
    • pp.183-189
    • /
    • 2011
  • Caffeine and capsaicin increase resting energy metabolism. However, most measurements have been conducted in short-term studies. Therefore, we investigated the effects of caffeine and capsaicin on energy expenditure and energy substrate utilization in resting rats for 6 h. The caffeine (Experiment 1) experiment included four male rats aged 5 weeks and measured the effects of oral administration of caffeine (10 or 50 mg/kg) on respiratory gas, energy expenditure, and energy substrate oxidation for 6 h. Experiment 2 included four male rats aged 6 weeks to measure the effects of capsaicin (10 mg/kg) using the same method as in Experiment 1. The results of Experiment 1 indicated that O2 uptake and carbohydrate oxidation after caffeine administration for 2 h was higher in the 10 mg trial than that in the 50 mg or placebo trials (P < 0.05). However fat oxidation was not significantly different. In contrast, capsaicin (Experiment 2) observed no differences between the placebo and the capsaicin trials. In conclusion, caffeine initially increased the resting energy consumption for 2 h, and this energy expenditure was due to carbohydrate oxidation. Capsaicin did not change oxygen uptake, respiratory exchange ratio, fat oxidation, or carbohydrate oxidation.

A Case Study of Paraffin Double-walled Microencapsulation Preparation Using Acrylic Polymer and Melamine Polymer for Thermal Energy Storage

  • Nguyen, Hang Vo-Minh;Kim, Chae-Hyun;Kim, Jong-Kuk
    • 한국태양에너지학회 논문집
    • /
    • 제39권5호
    • /
    • pp.65-78
    • /
    • 2019
  • In this study, we investigated the paraffin encapsulation using double-walled encapsulation technique. The first encapsulation used methyl methacrylic acid as the main component in acrylic polymer and the second encapsulation used melamine polymer. Particles size and distribution of the capsules were analyzed using scanning electron microscopy. In the first encapsulation, the stable capsules were obtained at 67% of phase change material ratio to methyl methacrylic acid monomer and the size of the capsule was from 0.2 to $0.3{\mu}m$. In the second encapsulation, the size of the capsules was almost the same with those capsules prepared in the first encapsulation. The particle size of single wall and double wall was about $0.3{\mu}m$. As a result of the encapsulation of paraffin using double-walled encapsulation technique, it was confirmed that the particle size was determined in the process of encapsulating using the acrylic polymer at the first wall material, and the physical and thermal stability of the capsules were imparted using melamine at the secondary wall material.

바이오디젤 혼합연료를 적용한 승용디젤엔진의 성능 및 배출물 저감특성 (Engine performance and emission reduction characteristics of biodiesel blended diesel fuel in a passenger car diesel engine)

  • 조시기
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.181-185
    • /
    • 2014
  • 본 논문은 카놀라 바이오디젤 혼합연료를 승용디젤엔진에 적용하였을 때 나타나는 연소 및 배기배출물 특성에 관한 연구이다. 본 연구에서는 카놀라 바이오디젤을 20%, 40%를 ULSD 80%, 60%와 체적비로 혼합한 혼합연료를 사용하여 ULSD 결과 데이터와 비교하였다. 엔진 회전속도, 엔진부하, 연료분사압력 변화를 실험변수로 사용하였으며. 카놀라 바이오 디젤의 혼합비가 증가 할수록 NOx 배출량은 증가하였지만, Soot 배출량은 감소하는 결과를 나타내었다. 또한 Soot 배출량은 낮은 연료분사압력에서 높은 배출량을 보였다.

과부하 사각형 맨홀의 배수능력 증대에 관한 실험적 연구 (An Experimental Study for Drainage Capacity Increment at Surcharged Square Manholes)

  • 김정수;송주일;윤세의
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.619-625
    • /
    • 2008
  • Urban sewer systems are designed to operate in open-channel flow regime and energy loss at square manholes is usually not significant. However, the energy loss at surcharged manholes is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the head loss associated with manholes, especially in surcharged flow. Hydraulic experimental apparatus which can change the manhole inner profile(CASE I, II, III, and IV) and the invert types(CASE A, B, C) were installed for this study. The experimental discharge was $16{\ell}/sec$. As the ratio of b/D(manhole width/inflow pipe diameter) increases, head loss coefficient increases due to strong horizontal swirl motion. The head loss coefficients for CASE I, II, III, and IV were 0.46, 0.38, 0.28 and 0.37, respectively. Side covers increase considerably drainage capacity at surcharged square manhole when the ratio of d/D(side cover diameter/inflow pipe diameter) was 1.0. The head loss coefficients for CASE A, B, and C were 0.45, 0.37, and 0.30, respectively. Accordingly, U-invert is the most effective for energy loss reduction at surcharged square manhole. This head loss coefficients could be available to evaluate the urban sewer system with surcharged flow.

성토재로의 활용을 위한 Bottom Ash의 파쇄지수 산정 및 투수계수 변화 (Breakage Index and Changes in Permeability of Bottom Ash for Use as Fill Material)

  • 김동근;손영환;박재성;봉태호
    • 한국농공학회논문집
    • /
    • 제57권6호
    • /
    • pp.107-115
    • /
    • 2015
  • The objective of the this study is to find the breakage index and changes in permeability of Bottom ash from thermoelectric power plants in Korea. Bottom ash was crushed by compaction according to compaction energy from 0 to $1661.4\;kN/m^2$. The particle size distribution was estimated by sieve analysis. The various breakage indexes were used for analyzing the change in particle size distribution and effect of compaction energy. In the result, breakage indexes were increased as compaction energy and initial upper 4.75 mm diameter ratio, but values and tendencies of breakage indexes appeared in different as calculation method of breakage indexes. The coefficient of permeability was decreased with particle breakage, but decreasing ratio of permeability was very small. Bottom ash has a higher permeability than the weathered soil and it is considered high usability as a permeable materials.

리튬계 수소화물 전해질 복합막의 열확산 및 전기화학적 특성평가 (Evaluations of Thermal Diffusivity and Electrochemical Properties for Lithium Hydride and Electrolyte Composites)

  • 황준현;홍태환
    • 한국재료학회지
    • /
    • 제32권10호
    • /
    • pp.429-434
    • /
    • 2022
  • There is ongoing research to develop lithium ion batteries as sustainable energy sources. Because of safety problems, solid state batteries, where electrolytes are replaced with solids, are attracting attention. Sulfide electrolytes, with a high ion conductivity of 10-3 S/cm or more, have the highest potential performance, but the price of the main materials is high. This study investigated lithium hydride materials, which offer economic advantages and low density. To analyze the change in ion conductivity in polymer electrolyte composites, PVDF, a representative polymer substance was used at a certain mass ratio. XRD, SEM, and BET were performed for metallurgical analyses of the materials, and ion conductivity was calculated through the EIS method. In addition, thermal conductivity was measured to analyze thermal stability, which is a major parameter of lithium ion batteries. As a result, the ion conductivity of LiH was found to be 10-6 S/cm, and the ion conductivity further decreased as the PVDF ratio increased when the composite was formed.

분류층 석탄 가스화기 반응 유동장 변수 전산해석 연구 (PARAMETRIC NUMERICAL STUDY OF THE REACTING FLOW FIELD OF A COAL SLURRY ENTRAINED GASIFIER)

  • 송우영;김혜숙;신미수;장동순;이재구
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.44-51
    • /
    • 2014
  • Considering the importance of the detailed resolution of the reacting flow field inside a gasifier, the objective of this study lies on to investigate the effect of important variables to influence on the reacting flow and thereby to clarify the physical feature occurring inside the gasifier using a comprehensive gasifier computer program. Thus, in this study the gasification process of a 1.0 ton/day gasifier are numerically modeled using the Fluent code. And parametric investigation has been made in terms of swirl intensity and aspect ratio of the gasifier. Doing this, special attention is given on the detailed change of the reacting flow field inside a gasifier especially with the change of this kind of design and operation parameters. Based on this study, a number of useful conclusions can be drawn in the view of flow pattern inside gasifier together with the consequence of the gasification process caused by the change of the flow pattern. Especially, swirl effect gives rise to a feature of a central delayed recirculation zone, which is different from the typical strong central recirculation appeared near the inlet nozzle. The delayed feature of central recirculation appearance could be explained by the increased axial momentum due to the substantial amount of the presence of the coal slurry occupying over the entire gasifier in gasification process. Further, the changes of flow pattern are explained in detail with the gasifier aspect ratio. In general, the results obtained are physically acceptable in parametric study.