• Title/Summary/Keyword: energy based design

Search Result 3,531, Processing Time 0.033 seconds

A Study on the Educational Game Design for Practicing Energy Saving in Elementary School Students (초등학생의 에너지 절약 실천을 위한 교육용 Game Design 연구)

  • Park, Hyun-Joo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.14-20
    • /
    • 2019
  • Energy saving is becoming more and more important issue due to lack of resources and limited nature. However, There is a lack of learning status on energy saving in the school field. In particular, in elementary education on energy saving was not linked to practice, and the educational effect was insufficient. Although various kinds of learning tools are utilized, many successful cases of energy saving game strategy are introduced in overseas industry field, and game design is proposed so that energy related education can be played through games. Because energy conservation can not be effective without practice, learning using games as a tool is expected to be more effective than learning based on knowledge transfer in the classroom. We propose a defense game for energy conservation education by using the mission elements, score acquisition element, time limit element, and character element which are the interesting elements of the game designed in the previous research.

Evaluation of Energy Loads for Broiler-Standard Design Models Using a Building Energy Simulation Method (건물에너지시뮬레이션 기법을 이용한 육계사 표준설계모델의 에너지 부하 산출)

  • Kwon, Kyeong-seok;Yang, Ka-young;Kim, Jong-bok;Jang, Dong-hwa;Ha, Taehwan;Jeon, So-ra
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.27-39
    • /
    • 2023
  • This study was to quantitatively evaluate periodic and maximum energy loads for broiler-standard design models by the Ministry of Agriculture, Food and Rural Affairs (2016). Building energy simulation method was used to compute heating and cooling loads of the designed broiler houses according to regional locations and insulation characteristics of wall and roof. It considered sensible and latent heat generation from broilers, dynamic operation of ventilation system according to environment variations. It was found that variation of periodic heating loads was relatively higher than that of periodic cooling loads according to thickness changes of wall and roof. Assuming that broiler was raised at every even-month, periodic heating and cooling loads were 6 and 18% lower, respectively than odd-month raising condition. When recommendation rules of insulation characteristics (wall and roof thickness) by the Ministry of Land, Infrastructure and Transport was adopted, periodic heating load of Jeju-si was 20.3% higher than national average values. Based on the BES computed periodic and maximum energy loads under the designed experimental condition, these results can contribute to reestablishing standard design of broiler houses, especially for insulation characteristics, and designing management strategies for efficient energy uses.

Scoping Calculations on Criticality and Shielding of the Improved KAERI Reference Disposal System for SNFs (KRS+)

  • Kim, In-Young;Cho, Dong-Keun;Lee, Jongyoul;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.37-50
    • /
    • 2020
  • In this paper, an overview of the scoping calculation results is provided with respect to criticality and radiation shielding of two KBS-3V type PWR SNF disposal systems and one NWMO-type CANDU SNF disposal system of the improved KAERI reference disposal system for SNFs (KRS+). The results confirmed that the calculated effective multiplication factors (keff) of each disposal system comply with the design criteria (< 0.95). Based on a sensitivity study, the bounding conditions for criticality assumed a flooded container, actinide-only fuel composition, and a decay time of tens of thousands of years. The necessity of mixed loading for some PWR SNFs with high enrichment and low discharge burnup was identified from the evaluated preliminary possible loading area. Furthermore, the absorbed dose rate in the bentonite region was confirmed to be considerably lower than the design criterion (< 1 Gy·hr-1). Entire PWR SNFs with various enrichment and discharge burnup can be deposited in the KRS+ system without any shielding issues. The container thickness applied to the current KRS+ design was clarified as sufficient considering the minimum thickness of the container to satisfy the shielding criterion. In conclusion, the current KRS+ design is suitable in terms of nuclear criticality and radiation shielding.

Resonant Tank Design Considerations and Implementation of a LLC Resonant Converter with a Wide Battery Voltage Range

  • Sun, Wenjin;Wu, Hongfei;Hu, Haibing;Xing, Yan
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1446-1455
    • /
    • 2015
  • This paper illustrates resonant tank design considerations and the implementation of a LLC resonant converter with a wide battery voltage range based on the fundamental harmonic approximation (FHA) analysis. Unlike the conventional design at zero load, the parameter K (the ratio of the transformer magnetizing inductor Lm to the resonant inductor Lr) of the LLC converter in this paper is designed with two charging points, (Vo_min, Io_max1) and (Vo_max, Io_max2), according to the battery charging strategy. A 2.9kW prototype with an output voltage range of 36V to 72V dc is built to verify the design. It achieves a peak efficiency of 96%.

Design Parameters of Small Hydro Power Sites for River Systems(II) (소수력발전입지의 수계별 설계변수 특성(II))

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study show that the data were in good agreement with measured results of long term inflow at Andong dam. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites had some difference between the river systems. Especially, the specific design flow and specific output of SHP sites located on North Han river and Nakdong river systems had large difference compared with other river systems.

A Study on Thermal Design of Printed Circuit Heat Exchanger for Supply of Cryogenic High Pressure Liquid Hydrogen (극저온 고압액체수소 공급용 인쇄기판 열교환기의 열설계에 관한 연구)

  • SOHN, SANGHO;CHOI, BYUNG-IL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.347-355
    • /
    • 2021
  • This paper is a study on the thermal design of printed circuit heat exchanger (PCHE) to supply cryogenic high pressure liquid hydrogen stored from hydrogen liquefaction process by using computational fluid dynamics (CFD). This PCHE should be thermally designed to raise the temperature of cryogenic liquid hydrogen to a desired temperature and also to be anti-icing to avoid any local freezing in hot channel. This research presents the effect of inlet velocity and inlet temperature of hydrogen, and the effect of flow configurations of co/counter-flow on thermal design of PCHE heat exchanger based on various CFD simulation analysis.

Building Commissioning Management Framework from the Case Study of Green Building (녹색건축물인증(LEED) 사례연구를 통한 커미셔닝 관리 프레임워크 도출)

  • Jeong, Jin-Hak;Park, So-Yeon;Song, Dong-Hun;Ahn, Yong-Han
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.8
    • /
    • pp.23-30
    • /
    • 2018
  • A necessity of increasing the energy efficiency of the buildings is rising due to global warming and high energy demands prices. Commissioning is an effective way to increase the energy efficiency of the building and reduce maintenance costs. In this study, a case study was conducted to derive the commissioning process of green building and propose management factors that can be used in domestic commissioning projects. The case was a university renovation project that received a LEED Glod certification and conducted the enhanced commissioning. The commissioning is divided into planning, design, construction, and post-construction phases. In the planning stage, commissioning company selection, commissioning goal setting, tasks and responsibilities for each subject are set. In the design phase, preparations are made for inspection and construction steps to prevent design errors. In the construction phase, problems are solved through periodic on-site inspections. In the post-construction phase, a final report with all the details of the commissioning will be created and future maintenance strategies will be proposed. Based on the findings of this study, it will be a basis for the management factors that can be used in the implementation of domestic commissioning projects.

STUDY OF INTERNAL RECYCLE DISTRIBUTION AND HEAT TRANSFER EFFECT FOR OPTIMAL DESIGN OF DIVIDING WALL DISTILLATION COLUMNS

  • Lee, Ki-Hong;Lee, Moon-Yong;Jeong, Seong-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2319-2324
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved method is suggested to utilize the heat transfer through the wall to optimal column design. The suggested method is compared with the existing method via. simulation study and shows more improved energy saving result. Several control strategies for the divided wall column are tested and the optimal control strategy is propose

  • PDF

Design Optimization of Ball Grid Array Packaging by the Taguchi Method

  • Kim, Yeong-K.;Kim, Jae-chang;Choi, Joo-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.67-72
    • /
    • 2010
  • In this paper, a design optimization of ball grid array packaging geometry is studied based on the Taguchi method, which allowed robust design by considering the variance of the input parameters during the optimization process. Molding compound and substrate were modeled as viscoelastic, and finite element analyses were performed to calculate the strain energy densities of the eutectic solder balls. Six quality factors of the dimensions of the packaging geometry were chosen as control factors. After performing noise experiments to determine the dominant factors, main experiments were conducted to find the optimum packaging geometry. Then the strain energy densities between the original and optimized geometries were compared. It was found that the effects of the packaging geometry on the solder ball reliability were significant, and more than 40% of the strain energy density was reduced by the geometry optimization.

A Design of Thermosiphoning Air Panel and its Performance Analyzing (자연 대류식 태양열 집열기 (TAP)의 설계와 평가)

  • Shin, H.Y.;Lee, K.H.
    • Solar Energy
    • /
    • v.4 no.2
    • /
    • pp.51-57
    • /
    • 1984
  • The aim of the study is to the thermal performance of TAP (Thermosiphoning Air Panel) which is easily applicable to existing building as well as new building. TAP is one of the advantageous means of passive solar system, with a view to reducing the energy consumption of existing and new building. The instantaneous thermal efficency of a thermo siphoning collector depends primarily on the heat loss coefficient of the collector, the effectiveness of heattransfer between the absorber and the air, the average air temperature in the collector, the ambient air temperature, and the transmitted solar radiation. Because the important design variables are interrelated, it is, difficult to determine the effect of design decisions based on intuition. Therefore economical and effective TAP can be used easily, TAP had been designed and analyzed.

  • PDF