• Title/Summary/Keyword: energy based design

Search Result 3,531, Processing Time 0.034 seconds

Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network

  • Rao, Zheheng;Zeng, Chunyan;Wu, Minghu;Wang, Zhifeng;Zhao, Nan;Liu, Min;Wan, Xiangkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.413-435
    • /
    • 2018
  • Although the accuracy of handwritten character recognition based on deep networks has been shown to be superior to that of the traditional method, the use of an overly deep network significantly increases time consumption during parameter training. For this reason, this paper took the training time and recognition accuracy into consideration and proposed a novel handwritten character recognition algorithm with newly designed network structure, which is based on an extended nonlinear kernel residual network. This network is a non-extremely deep network, and its main design is as follows:(1) Design of an unsupervised apriori algorithm for intra-class clustering, making the subsequent network training more pertinent; (2) presentation of an intermediate convolution model with a pre-processed width level of 2;(3) presentation of a composite residual structure that designs a multi-level quick link; and (4) addition of a Dropout layer after the parameter optimization. The algorithm shows superior results on MNIST and SVHN dataset, which are two character benchmark recognition datasets, and achieves better recognition accuracy and higher recognition efficiency than other deep structures with the same number of layers.

Study on the Basic Design of Large Scale Solar Thermal Power Plant System (대규모 태양열 발전시스템 기본설계 특성 분석)

  • Kim, Jong-Kyu;Kang, Yong-Heack;Kim, Jin-Su;Lee, Sang-Nam;Yu, Chang-Kyun;Yun, Hwan-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.576-579
    • /
    • 2006
  • This paper describes characteristics and procedure of the basic design of large scale solar thermal power plant system. The evaluation is based on the operating data of CESA-I, solar central receiver plant. In order to evaluate the solar irradiation on the receiver, it is necessary to calculate the amount of thermal energy consumption at steam turbine and storage system in the STPPS. Especially, it is need to take into account of the storage and operating time to design a plant efficiently. In addition, basic design is performed for the CESA-I using the software tool of THERMOFLEX program. Based on the results, It is at lowed to use the program to investigate detail performance of each units of the STPPS by varying the operating conditions.

  • PDF

A DSP-Based Dual Loop Digital Controller Design and Implementation of a High Power Boost Converter for Hybrid Electric Vehicles Applications

  • Ellabban, Omar;Mierlo, Joeri Van;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.113-119
    • /
    • 2011
  • This paper presents a DSP based direct digital control design and implementation for a high power boost converter. A single loop and dual loop voltage control are digitally implemented and compared. The real time workshop (RTW) is used for automatic real-time code generation. Experimental results of a 20 kW boost converter based on the TMS320F2808 DSP during reference voltage changes, input voltage changes, and load disturbances are presented. The results show that the dual loop control achieves better steady state and transient performance than the single loop control. In addition, the experimental results validate the effectiveness of using the RTW for automatic code generation to speed up the system implementation.

Characteristic of a Superconducting Magnet for 3MJ SMES (3MJ SMES용 초전도 마그네트 특성연구)

  • 김해종;성기철;조전욱;배준한;김석환;심기덕;이언용;김해준;권영길
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.572-576
    • /
    • 2003
  • For quite a long time various researches and developments of superconducting magnetic energy storage(SMES) device have been done for enhancement of power qualify control of sensitive electric load. This paper describes the design. fabrication and experimental results for the 3MJ SMES magnet made by using the design code of a SMES device that we developed. A computer code was developed to find the parameters of the SMES magnet which has minimum amount of superconductor for the same stored energy, and the 3MJ SMES magnet was designed based upon that. And the 3MJ SMES magnet designed based upon those. In addition, 3MJ SMES magnet was made based on several research results which were ramp up to 1㎄ without quench.

Design of Smart Plug based Media Platform interlocking with ESS (ESS 연동형 스마트 플러그 기반의 미디어 플랫폼 설계)

  • Kang, Mingoo
    • Smart Media Journal
    • /
    • v.3 no.2
    • /
    • pp.37-42
    • /
    • 2014
  • In this paper, the function design of smart media platform control with smart monitoring, and displaying modules which have the priorities of smart plug based smart outlet, is proposed for electrical suppliance of essential information appliance in emergency power consumption situation(blackout, peaktime etc). The effect of power management will be maximized by this smart gateway interlocking with ESS(energy storage system) which has bi-directional power transmission control modules, and smart outlet based on the priority control actions.

Link Quality Based Transmission Power Control in IEEE 802.15.4 for Energy Conservation

  • Nepali, Samrachana;Shin, Seokjoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1925-1932
    • /
    • 2016
  • One of the major challenges in the design of wireless sensor network (WSN) is to reduce the energy consumption of sensor nodes for prolonging the network lifetime. In the sensor network, communication is the most energy consuming event. Therefore, most of the energy saving techniques conserve energy by adjusting different parameters of the trans-receiver. Among them, one of the promising methods is the transmission power control (TPC). In this paper, we investigated the effects of the link quality based TPC scheme employed to the IEEE 802.15.4 standard for energy saving. The simulation results demonstrated that the link quality based TPC scheme works effectively in conserving energy as compared to the conventional IEEE 802.15.4.

A study on the dynamic characteristics of the secondary loop in nuclear power plant

  • Zhang, J.;Yin, S.S.;Chen, L.;Ma, Y.C.;Wang, M.J.;Fu, H.;Wu, Y.W.;Tian, W.X.;Qiu, S.Z.;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1436-1445
    • /
    • 2021
  • To obtain the dynamic characteristics of reactor secondary circuit under transient conditions, the system analysis program was developed in this study, where dynamic models of secondary circuit were established. The heat transfer process and the mechanical energy transfer process are modularized. Models of main equipment were built, including main turbine, condenser, steam pipe and feedwater system. The established models were verified by design value. The simulation of the secondary circuit system was conducted based on the verified models. The system response and characteristics were investigated based on the parameter transients under emergency shutdown and overload. Various operating conditions like turbine emergency shutdown and overspeed, condenser high water level, ejector failures were studied. The secondary circuit system ensures sufficient design margin to withstand the pressure and flow fluctuations. The adjustment of exhaust valve group could maintain the system pressure within a safe range, at the expense of steam quality. The condenser could rapidly take out most heat to avoid overpressure.

A Study on the Design of Smart Farm Heating Performance using a Film Heater (필름 히터를 이용한 스마트 팜 난방 성능 설계에 관한 연구)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.153-159
    • /
    • 2023
  • This paper presents the optimal design of a heating system using radiant heating elements for application in smart farms. Smart farming, an advanced agricultural technology, is based on artificial intelligence and the internet of things and promotes crop production. Temperature and humidity regulation is critical in smart farms, and thus, a heating system is essential. Radiant heating elements are devices that generate heat using electrical energy. Among other applications, radiant heating elements are used for environmental control and heating in smart farm greenhouses. The performance of these elements is directly related to their electrical energy consumption. Therefore, achieving a balance between efficient electrical energy consumption and maximum heating performance in smart farms is crucial for the optimal design of radiant heating elements. In this study, the size, electrical energy supply, heat generation efficiency, and heating performance of radiant heating elements used in these heating systems were investigated. The effects of the size and electrical energy supply of radiant heating elements on the heating performance were experimentally analyzed. As the radiant heating element size increased, the heat generation efficiency improved, but the electrical energy consumption also increased. In addition, increasing the electrical energy supply improved both the heat generation efficiency and heating performance of the radiant heating elements. Based on these results, a method for determining the optimal size and electrical energy supply of radiant heating elements was proposed, and it reduced the electrical energy consumption while maintaining an appropriate heating performance in smart farms. These research findings are expected to contribute to energy conservation and performance improvement in smart farming.

Towards New Generation of Seismic Design Methodologies for Performance-based Design (성능기초설계를 위한 차세대 내진설계의 방향)

  • 홍성걸;김남희;장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.276-283
    • /
    • 2001
  • Performance-based design concepts require the next generation of codes. To implement the main concepts several design methodologies have been proposed. This paper reviews the framework of Korea Seismic Code and shows necessary modification for adoption of appropriate design methods. The selection of design earthquake levels with the introduction of risk factor is discussed for proper risk levels for all earthquake hazards. Displacement-based design, energy-based design, comprehensive design, and force-strength design methods are reviewed as one of possible next generation design methods. This paper proposes the direction of reconstruction for design earthquake levels with performance matrix, introduction of new design methods, and emphasis on non- structural components.

  • PDF

Basic Design of the Underground Tunnel for the Research on High-level Waste Disposal (고준위폐기물 처분연구용 지하터널의 기본설계)

  • Cho Won-Jin;Kwon Sang-Ki;Park Jung-Hwa;Hahn Pil-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.279-292
    • /
    • 2004
  • The underground research tunnel is essential to validate the integrity of a reference high-level waste disposal system, and the safety of geological disposal. In this study, a basic design of an underground research tunnel (URT) was tried to be developed. The candidate site for URT was described briefly, and it was intended to suggest the basic concept of the underground research tunnel. In order to develop the design of URT based on the basic concept, design requirements were established. Based on the basic concept and the design requirements, the basic design of URT was performed. Research items to be studied in the URT were also derived in this study.

  • PDF