• Title/Summary/Keyword: energy barrier

Search Result 836, Processing Time 0.029 seconds

Effect of Volume Variation on Energy Barrier for Proton Conduction in BaZrO3 (BaZrO3의 부피 변화가 프로톤 전도 에너지 장벽에 미치는 영향)

  • Jeong, Yong-Chan;Kim, Dae-Hee;Kim, Byung-Kook;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.474-478
    • /
    • 2010
  • We studied the energy barrier for proton conduction with volume variation in $BaZrO_3$ using a first principles study to investigate an optimum volume for the proton conduction. The volume increase of $BaZrO_3$ was expected to decrease the energy barrier for proton rotation and to increase that for proton transfer, and these trends could be extrapolated when the volume was decreased. However, the energy barriers for the proton transfer with the volume decrease were increased, while all the other energy barriers varied as expected. We could explain this unexpected behavior by the bent Zr-O-Zr structure, when the volume was decreased.

Demonstration of Heat Dissipation Performance of Copper Plate in Engineered Barrier System

  • Minsoo Lee;Jin-Seop Kim;Min-Seop Kim;Seok Yoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.105-115
    • /
    • 2024
  • In this study, we employed a small-scale experiment to demonstrate the introduction of a thin copper heat dissipation plate into a bentonite buffer layer of an engineered barrier system. This experiment designed for spent nuclear fuel disposal can effectively reduce the maximum temperature of the bentonite buffer layer, and ultimately, make it possible to reduce the area of the disposal site. For the experiment, a small-scale engineered barrier system with a copper heat dissipation plate was designed and manufactured. the thickness of the cylindrical buffer was about 2 cm, which was about 1/20 of KAERI Repository System (KRS). At a power supply of 250 W, the maximum buffer temperature reduced to a mere 1.8℃ when the thin copper plate was introduced. However, the maximum surface temperature reduced to a remarkable 9.1℃, when a U-collar copper plate was introduced, which had a good contact with the other barrier layers. Consequently, we conclude that the introduction of the thin copper plate into the engineered barrier system for spent nuclear fuel disposal can effectively reduce the maximum buffer temperature in high-level radioactive waste disposal repositories.

Ozone Generation Characteristics in Dielectric Barrier Discharge (유전체 장벽 방전내에서 오존발생 특성)

  • Lee, Hyeong-Ho;Jo, Guk-Hui;Kim, Yeong-Bae;Seo, Gil-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.673-678
    • /
    • 2000
  • The dielectric barrier discharge(DBD) is a common method to create a nonthermal plasma in which electrical energy is used to create electrons with a high average kinetic energy. The unique aspect of dielectric barrier discharges is the large array of short lifetime(10ns) silent discharges created over the surface of the dielectric. A silent discharge is generated when the applied voltage exceeds the breakdown voltage of the carrier gas creating a conduction path between the applied electrode and grounded electrode. As charge accumulates on the dielectric, the electric field is reduced below the breakdown field of the carrier gas and the silent discharge self terminates preventing the DBD cell from producing a thermal arc. In fact, the most significant application of dielectric barrier discharges is to generate ozone for contaminated water treatment. Therefore, experiments were perfomed at 1∼2[bar] pressure using a coaxial geometry single dielectric barrier discharge for ozone concentrations and energy densities. The main result show that the concentration and efficiency of ozone are influenced by gas nature, gas quantity, gas pressure, supplied voltage and frequency.

  • PDF

Optimization of Designing Barrier to Mitigate Hazardous Area in Hydrogen Refueling Stations (수소충전소 폭발위험장소 완화를 위한 확산차단벽 최적화 설계)

  • SEUNGHYO AN;SEHYEON OH;EUNHEE KIM;JUNSEO LEE;BYUNGCHOL MA
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.734-740
    • /
    • 2023
  • Hydrogen emphasis on safety management due to its high potential for accidents from wide explosive limits and low ignition energy. To prevent accidents, appropriate explosion-proof electrical equipment with installed to safe management of ignition sources. However, designing all facilities with explosion-proof structures can significantly increase costs and impose limitations. In this study, we optimize the barrier to effectively control the initial momentum in case of hydrogen release and form the control room as a non-hazardous area. We employed response surface method (RSM), the barrier distance, width and height of the barrier were set as variables. The Box-Behnken design method the selection of 15 cases, and FLACS assessed the presence of hazardous area. Analysis of variance (ANOVA) analysis resulting in an optimized barrier area. Through this methodology, the workplace can optimize the barrier according to the actual workplace conditions and classify reasonable hazardous area, which is believed to secure safety in hydrogen facilities and minimize economic burden.

Computer simulation of agglomeration in colloidal alumina powder suspension (콜로이드성 알루미나 분말 입자의 응집현상의 컴퓨터 시뮬레이션)

  • 김종철;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.224-230
    • /
    • 1999
  • Agglomeration of colloidal alumina particles in a suspension is simulated. Particles in a suspension have potential energies between them and move to decrease the summation of all the potential energies between particles. The effects of various types of potential curves on particle agglomeration were checked. Strong short range attractive energy without repulsive energy barrier makes small strong clusters with disordered network structure but weak short-range force with big repulsive energy barrier makes big agglomerates with a close packing structure. As particles are agglomerated the potential energy with strong repulsive energy barrier between agglomerates gradually decreases the importance of the repulsive energy barrier and induces a different type of agglomeration behavior.

  • PDF

The Strategy of Renewable Energy of Sri Lanka for Energy-based Economic Development: Case of Wind Power

  • Han, Jong Taek;Kim, Jun Yeup
    • International Area Studies Review
    • /
    • v.21 no.1
    • /
    • pp.281-301
    • /
    • 2017
  • This article examines the way of the functionality of policy instruments for the development of renewable energy through the case of the wind power. The general barrier of the renewable energy development is considered to be the economic barrier. However the principal issue is the political barrier without the broad cooperation between the host government and the firm. Maintaining the long-term competitive advantage requires the shift of not only the strategy following the external circumstance but also the internal capacity development to utilize resources. Thus the comparative case study of Sri Lanka and Germany proposes the analysis of the supply-push and demand-pull policy with five patterns on the development of wind power in order to suggest how the functionality of policy instruments must be served to foster the wind power.

Stability of ITO/Buffer Layer/TPD/Alq3/Cathode Organic Light-emitting Diode

  • Chung, Dong-Hoe;Ahn, Joon-Ho;Oh, Hyun-Seok;Park, Jung-Kyu;Lee, Won-Jae;Choi, Sung-Jai;Jang, Kyung-Uk;Shin, Eun-Chul;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.260-264
    • /
    • 2007
  • We have studied stability in organic light-emitting diode depending on buffer layer and cathode. A transparent electrode of indium-tin-oxide(ITO) was used as an anode. An electron injection energy barrier into organic material is different depending on a work function of cathodes. Theoretically, the energy barriers for the electron injection are 1.2 eV, -0.1 eV, and 0.0 eV for Al, LiAl, and LiF/Al at 300 K, respectively. We considered the cases that holes are injected to organic light-emitting diode. The hole injection energy barrier is about 0.7 eV between ITO and TPD without buffer layer. For hole-injection buffer layers of CuPc and PEDOT:PSS, the hole injection energy barriers are 0.4 eV and 0.5 eV, respectively. When the buffer layer of CuPc and PEDOT:PSS is existed, we observed the effects of hole injection energy barrier, and a reduction of operating-voltage. However, in case of PVK buffer layer, the hole injection energy barrier becomes high(1.0 eV). Even though the operating voltage becomes high, the efficiency is improved. A device structure for optimal lifetime condition is ITO/PEDOT:PSS/TPD/$Alq_3$/LiAl at an initial luminance of $300cd/m^2$.

Lower Hole-injection barrier between pentacene and HDT-modified Gold with lowered workfunction

  • Hong, Ki-Pyo;Lee, Jong-Won;Yang, Sang-Yoon;Shin, Kwon-Woo;Jeon, Ha-Young;Kim, Se-Hyun;Park, Chan-Eon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.238-238
    • /
    • 2006
  • Through ultra-violet photoemission spectroscopy in-situ experiment, 0.67 eV energy barrier between 1-hexadecanethiol (HDT)-modified gold and pentacene was observed, which was 0.03 eV smaller than the energy barrier between bare gold and pentacene despite HDT modified gold had 0.8 eV lower work function than that of bare gold. This result is opposed to the idea that increasing the work function a metal decreases the energy barrier. This can be explained by two factors. One is the absence of interface dipole, which is observed in pentacene deposited on gold. The other is reduced ionization energy which can be explained through polarization energy or electronic splitting of molecular orbital with more crystalline structure observed through X-ray diffraction patterns.

  • PDF

Reaction Kinetics and Dependence of Energy Efficiency in the Dilute Trichloroethylene Removal by Non-thermal Plasma Process combined with Manganese Dioxide

  • Han, Sang-Bo;Oda, Tetsuji;Park, Jae-Youn;Koh, Hee-Seok;Park, Sang-Hyun;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.552-553
    • /
    • 2005
  • In order to improve energy efficiency in the dilute trichloroethylene removal using the nonthermal plasma process, the barrier discharge treatment combined with manganese dioxide was experimentally studied. Reaction kinetics in this process was studied on the basis of final byproducts distribution. Decomposition efficiency was improved to about 99% at the specific energy 40J/L with passing through manganese dioxide. C=C $\pi$ bond cleavage in TCE gave DCAC (single bond, C-C) through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were broken easily in the subsequent catalytic reaction due to the weak bonding energy about 3 ~ 4 eV compared with the double bonding energy in TCE molecules. Oxidation byproducts of DCAC and TCAA from TCE decomposition are generated from the barrier discharge plasma treatment and catalytic surface chemical reaction, respectively. Complete oxidation of TCE into $CO_X$ is required to about 400J/L.

  • PDF

Effects of Operating Parameters on Toluene Removal in Dielectric Barrier Discharge Process (무성방전내에서 톨루엔 제거에 미치는 운전변수의 영향)

  • 정재우;이용환;박경렬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.173-182
    • /
    • 2002
  • We investigated the effects of operating variables, such as electrical. reactor and gas parameters on toluene removal and discharge property in the dielectric barrier discharge (DBD) process. The toluene removal was initiated with the energy transfer to the reactor by loading of voltages higher than the discharge onset value. The energy transfer and toluene removal increased with the applied voltage. Higher removal rate was observed with smooth surface electrode despite of lower energy transfer compared with the coarse electrode, because more uniform discharge can be obtained on smooth surface state. The decrease of dielectric material thickness enhanced the removal efficiency by increasing the discharge potential. The toluene removal efficiency decreased with the increase of the inlet concentration. The increase of gas retention time enhanced the removal efficiency by the increase of energy density. The oxygen and humidity contents seem to exert significant influences on the toluene removal by dominating the generation of electrons, ions, and radicals which are key factors in the removal mechanism.