• Title/Summary/Keyword: energy balance approach

Search Result 126, Processing Time 0.02 seconds

Debonding failure analysis of prestressed FRP strengthened RC beams

  • Hoque, Nusrat;Jumaat, Mohd Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.543-555
    • /
    • 2018
  • Fiber Reinforced Polymer (FRP), which has a high strength to weight ratio, are now regularly used for strengthening of deficient reinforced concrete (RC) structures. While various researches have been conducted on FRP strengthening, an area that still requires attention is predicting the debonding failure load of prestressed FRP strengthened RC beams. Application of prestressing increases the capacity and reduces the premature failure of the beams largely, though not entirely. Few analytical methods are available to predict the failure loads under flexure failure. With this paucity, this research proposes a method for predicting debonding failure induced by intermediate crack (IC) for prestressed FRP-strengthened beams. The method consists of a numerical study on beams retrofitted with prestressed FRP in the tension side of the beam. The method applies modified Branson moment-curvature analysis together with the global energy balance approach in combination with fracture mechanics criteria to predict failure load for complicated IC-induced failure. The numerically simulated results were compared with published experimental data and the average of theoretical to experimental debonding failure load is found to be 0.93 with a standard deviation of 0.09.

Numerical and theoretical modelling of low velocity impact on UHPC panels

  • Prem, Prabhat R.;Verma, Mohit;Ramachandra Murthy, A.;Rajasankar, J.;Bharatkumar, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.207-215
    • /
    • 2017
  • The paper presents the studies carried out on low velocity impact of Ultra high performance concrete (UHPC) panels of size $350{\times}350{\times}10mm^3$ and $350{\times}350{\times}15mm^3$. The panels are cast with 2 and 2.5% micro steel fibre and compared with UHPC without fiber. The panels are subjected to low velocity impact, by a drop-weight hemispherical impactor, at three different energy levels of 10, 15 and 20 J. The impact force obtained from the experiments are compared with numerically obtained results using finite element method, theoretically by energy balance approach and empirically by nonlinear multi-genetic programming. The predictions by these models are found to be in good coherence with the experimental results.

Dietary Reference Intakes for Protein: Protein Requirement and Estimation Method, AMDR (Amount of Macronutrient Distribution Range), for Protein (단백질 섭취기준: 단백질 필요량과 추정 방법 및 단백질에너지 적정비율)

  • Chang, Soon-Ok
    • Journal of Nutrition and Health
    • /
    • v.44 no.4
    • /
    • pp.338-343
    • /
    • 2011
  • This study assessed the current EAR, RDA, and AMDR for protein, which were set in 2005 and revised in 2010 as the DRIs for Koreans. A classical approach to establish the EAR for protein has been the nitrogen balance method. This method has practical limitations and problems in statistical analysis by giving over estimations of nitrogen balance. Thus, the present EAR for protein might be lower than the true requirement. Recent reevaluations of nitrogen balance studies by bilinear regression analysis and the IAAO method have indicated that the EAR of 0.66 g/kg bw/d should be increased by 39% to give 0.92 g/kg bw/d. The AMDR for protein in the Korean DRIs was set at 7-10%, which covers almost the entire population's protein intake. Since the 5th percentile of Korean protein intake is close to 10% of energy and due to the beneficial effects of protein beyond the maintenance of nitrogen equilibrium, the lower range of 7% needs to be increased up to 10%. For practical meal arrangement, 15% of energy as protein, which is close to the average protein intake of Koreans, seems to be proper, although the value is almost two times the EAR.

Greenhouse Gas Emission and Abatement Potential Analysis for the Korean Horticulture Energy Sector Using Bottom-Up Approach (상향식 접근법에 의한 국내 시설재배 에너지부분의 온실가스 배출량 및 감축 잠재량 분석)

  • Paik, Chunhyun;Chung, Yongjoo
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.146-158
    • /
    • 2015
  • A bottom-up approach has been conducted to estimate greenhouse gas (GHG) emission and to analyze the marginal abatement cost for the Korean horticulture energy sector. With the systematically derived activity and energy balance data, the BAUs have been estimated, along with the marginal abatement cost over the period 2010 through 2030. The result from the marginal abatement cost analysis may provide general guidelines and procedures for the establishment of GHG abatement polices.

Lifetime estimation of a covered overhead line conductor

  • Leskinen, Tapio;Kantola, Kari
    • Wind and Structures
    • /
    • v.6 no.4
    • /
    • pp.307-324
    • /
    • 2003
  • The paper presents results of studies concerning wind-induced aeolian vibration and fatigue of a 110 kV covered conductor overhead line. Self-damping measurement techniques are discussed: power method is found to be the most reliable technique. A method for compensating tension variations during the self-damping test is presented. Generally used empirical self-damping power models are enhanced and the different models are compared with each other. The Energy Balance Analysis (EBR) is used to calculate the aeolian vibration amplitudes, which thereafter are converted to bending stress for the calculation of conductor lifetime estimate. The results of EBA are compared with field measurements, Results indicate that adequate lifetime estimates are produced by EBA as well as field measurements. Generally the EBA gives more conservative lifetime expectancy. This is believed to result from the additional damping existing in true suspension structures not taken into account by EBA. Finally, the correctness of the line design is verified using Cigre's safe design tension approach.

Optimization approach of insulation thickness of non-vacuum cryogenic storage tank

  • MZAD, Hocine;HAOUAM, Abdallah
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.17-23
    • /
    • 2020
  • Cryogenic insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Insulations are listed in order of increasing performance and, generally, in order of increasing cost. The specific insulation to be used for a particular application is determined through a compromise between cost, ease of application and the effectiveness of the insulation. Consequently, materials, representative test conditions, and engineering approach for the particular application are crucial to achieve the optimum result. The present work is based on energy cost balance for optimizing the thickness of insulated chambers, using foamed or multi layered cryogenic shell. The considered insulation is a uniformly applied outer layer whose thickness varies with the initial and boundary conditions of the studied vessel under steady-state radial heat transfer. An expression of the optimal insulation thickness derived from the total cost function and depending on the geometrical parameters of the container is presented.

Accurate periodic solution for non-linear vibration of dynamical equations

  • Pakar, Iman;Bayat, Mahmoud;Bayat, Mahdi
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • In this paper we consider three different cases and we apply Variational Approach (VA) to solve the non-natural vibrations and oscillations. The method variational approach does not demand small perturbation and with only one iteration can lead to high accurate solution of the problem. Some patterns are presented for these three different cease to show the accuracy and effectiveness of the method. The results are compared with numerical solution using Runge-kutta's algorithm and another approximate method using energy balance method. It has been established that the variational approach can be an effective mathematical tool for solving conservative nonlinear dynamical equations.

Optimized Energy Cluster Routing for Energy Balanced Consumption in Low-cost Sensor Network

  • Han, Dae-Man;Koo, Yong-Wan;Lim, Jae-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1133-1151
    • /
    • 2010
  • Energy balanced consumption routing is based on assumption that the nodes consume energy both in transmitting and receiving. Lopsided energy consumption is an intrinsic problem in low-cost sensor networks characterized by multihop routing and in many traffic overhead pattern networks, and this irregular energy dissipation can significantly reduce network lifetime. In this paper, we study the problem of maximizing network lifetime through balancing energy consumption for uniformly deployed low-cost sensor networks. We formulate the energy consumption balancing problem as an optimal balancing data transmitting problem by combining the ideas of corona cluster based network division and optimized transmitting state routing strategy together with data transmission. We propose a localized cluster based routing scheme that guarantees balanced energy consumption among clusters within each corona. We develop a new energy cluster based routing protocol called "OECR". We design an offline centralized algorithm with time complexity O (log n) (n is the number of clusters) to solve the transmitting data distribution problem aimed at energy balancing consumption among nodes in different cluster. An approach for computing the optimal number of clusters to maximize the network lifetime is also presented. Based on the mathematical model, an optimized energy cluster routing (OECR) is designed and the solution for extending OEDR to low-cost sensor networks is also presented. Simulation results demonstrate that the proposed routing scheme significantly outperforms conventional energy routing schemes in terms of network lifetime.

An Analysis of Heat Losses from Receivers for a Multifaceted Parabolic Solar Collector (접시형 태양열 집광시스템용 흡수기의 열손실 해석)

  • Ryu, S.Y.;Seo, T.B.;Kang, Y.H.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.61-73
    • /
    • 2000
  • Heat losses from receivers for a dish-type solar energy collecting system are numerically investigated. The analytical method for predicting conductive heat loss from a cavity receiver is used. The Stine and McDonald Model is used to estimate convective heat loss. Two kinds of techniques for the radiation analysis are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. Based on the heat loss analysis, the performance of two different receivers for multifaceted parabolic solar collectors with several flat facets can be estimated, and the optimal facet size is obtained.

  • PDF

Delamination analysis of multilayered beams with non-linear stress relaxation behavior

  • Victor I., Rizov
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.543-556
    • /
    • 2022
  • Delamination of multilayered inhomogeneous beam that exhibits non-linear relaxation behavior is analyzed in the present paper. The layers are inhomogeneous in the thickness direction. The dealamination crack is located symmetrically with respect to the mid-span. The relaxation is treated by applying a non-linear stress-straintime constitutive relation. The material properties which are involved in the constitutive relation are distributed continuously along the thickness direction of the layer. The delamination is analyzed by applying the J-integral approach. A time-dependent solution to the J-integral that accounts for the non-linear relaxation behavior is derived. The delamination is studied also in terms of the time-dependent strain energy release rate. The balance of the energy is analyzed in order to obtain a non-linear time-dependent solution to the strain energy release rate. The fact that the strain energy release rate is identical with the J-integral value proves the correctness of the non-linear solutions derived in the present paper. The variation of the J-integral value with time due to the non-linear relaxation behavior is evaluated by applying the solution derived.