• 제목/요약/키워드: energy and power production

검색결과 866건 처리시간 0.036초

열병합발전을 이용한 집단에너지사업의 온실가스 감축효과 (Effects of District Energy Supply by Combined Heat and Power Plant on Greenhouse Gas Emission Mitigation)

  • 신경아;동종인;강재성;임용훈;김다혜
    • 한국기후변화학회지
    • /
    • 제8권3호
    • /
    • pp.213-220
    • /
    • 2017
  • The purpose of this study is to analyze effects of Greenhouse Gas (GHG) emission reduction in district energy business mainly based on Combined Heat and Power (CHP) plants. Firstly this paper compares the actual carbon intensity of power production between conventional power plants and district energy plants. To allocate the GHG from CHP plants, two of different methods which were Alternative Generation Method and Power Bonus Method, have been investigated. The carbon intensity of power production in district energy plants ($0.43tonCO_2e/MWh$) was relatively lower than conventional gas-fired power plants ($0.52tonCO_2e/MWh$). Secondly we assessed the cost effectiveness of reduction by district energy sector compared to the other means using TIMES model method. We find that GHG marginal abatement cost of 'expand CHP' scenario (-$134/ton$CO_2$) is even below than renewable energy scenario such as photovoltaic power generation ($87/ton$CO_2$). Finally the GHG emission reduction potential was reviewed on the projected GHG emission emitted when the same amount of energy produced in combination of conventional power plants and individual boilers as substitution of district energy. It showed there were 10.1~41.8% of GHG emission reduction potential in district energy compared to the combination of conventional power plants and individual boilers.

Power Electronics as an Enabling Technology for Renewable Energy Integration

  • Blaabjerg, F.;Chen, Z.
    • Journal of Power Electronics
    • /
    • 제3권2호
    • /
    • pp.81-89
    • /
    • 2003
  • The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity, to produce, distribute and use the energy as0 efficient as possible and furthermore to set up incentives to save energy at the md-user. Two major technologies will play important roles to fulfill those targets. One is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficiency power electronics in power systems for high efficiency and high performance applications. This paper discusses both areas, in particular the power electronic application in wind power integration.

신재생에너지의 에너지 하베스팅을 위한 DPP시스템의 구성과 효율계산 (Configuration and Efficiency Computation of the DPP System for Energy Harvesting of Renewable Energy)

  • 박승화;이현재;손진근
    • 전기학회논문지P
    • /
    • 제67권3호
    • /
    • pp.137-142
    • /
    • 2018
  • Energy harvesting technology is drawing attention as a means of collecting various eco-friendly energy and accumulating residual energy. Recently, differential power processing (DPP) is being developed as part of energy harvesting. This is being studied as a solution to the loss of power generation between power modules and the problems caused by module small losses depending on the size of power production. In this paper, we propose the necessity of the DPP by comparing and analyzing energy harvesting related module integration system and power supply efficiency of DPP. The power efficiency of the converter and the power difference between the wind power and the photovoltaic power supply have been changed to demonstrate the effectiveness of the proposed system.

RO/PRO 공정에 의한 물/에너지/상호변환기술에 관한 연구 (Study on Water / Energy / Mutual-changing Technology by RO/PRO Process)

  • 최영권;윤택근;손진식;이상호;최준석
    • 한국유체기계학회 논문집
    • /
    • 제16권1호
    • /
    • pp.61-65
    • /
    • 2013
  • Water is an integral part of energy production because it is used directly in many power generation systems such as hydroelectric power plants and thermoelectric power plants. Water is also used extensively in energy-resource extraction, oil, natural gas, and alternative fuels refining and processing. Recently, osmotic power systems using seawater and freshwater has been also investigated to produce electricity in a sustainable way. This study focused on the use of RO and PRO for the mutual conversion of water and energy. This system allows the production of water from seawater if there is not enough water. It can also generate electricity from salinity gradient of brine water and fresh water if there is not enough energy. To demonstrate the feasibility of this technology, a set of laboratory-scale experiments were carried out using a specially-designed RO/PRO system. The efficiency of energy conversion was theoretically estimated based on the results from the experiments. The results indicated that water and energy could be easily converted using a single device. Nevertheless, a lack of optimum membrane for this purpose was identified as a major barrier for practical application.

마이크로 전력계통에서 연료전지 발전시스템의 전기/열의 최적운영 기법 연구 (Optimal Electricity and Heat Production Strategies of Fuel Cell Device in a Micro-grid Energy System)

  • 이주원;박종배;김수덕;김창섭
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1093-1099
    • /
    • 2009
  • Alternative energy sources such as renewable energy like solar power systems, wind power systems, or fuel cell power systems has been the rising issue in the electrical power system. This paper discusses an economic study analysis of fuel cells in the korean electricity market. It includes the basic concept of a fuel cell and the korean electricity market. It also describes the need of renewable energy and how the fuel cell is connected with the local grid. This paper shows the impact of production and recovering thermal energy of a grid-connected fuel cell power system. The profit maximization approach has been structured including electrical power trade with the local grid and heat trade within the micro-grid. The strategies are evaluated using a local load that uses electric and thermal power which has different patterns between summer and winter periods. The solution algorithm is not newly developed one, but is solved by an application called GAMS. Results indicate the need and usefulness of a fuel cell power system.

기상청 공공데이터를 활용한 대한민국 서해안 일대의 바람자원 분석 (Analysis of Wind Energy Potential on the West Coast of South Korea Using Public Data from the Korea Meteorological Administration)

  • 강상균;유성호;시나 하다디;서대원;오정근;이장호
    • 풍력에너지저널
    • /
    • 제14권3호
    • /
    • pp.14-24
    • /
    • 2023
  • The significance of renewable energy has been on the rise, as evidenced by the 3020 renewable energy plan and the 2050 carbon neutrality strategy, which seek to advance a low-carbon economy by implementing a power supply strategy centered around renewable energy sources. This study examines the wind resources on the west coast of South Korea and confirms the potential for wind power generation in the area. Wind speed data was collected from 22 automatic weather system stations and four light house automatic weather system stations provided by the Korea Meteorological Administration to evaluate potential sites for wind farms. Weibull distribution was used to analyze the wind data and calculate wind power density. Annual energy production and capacity factors were estimated for 15-20 MW-class large wind turbines through the height correction of observed wind speeds. These findings offer valuable information for selecting wind power generation sites, predicting economic feasibility, and determining optimal equipment capacity for future wind power generation sites in the region.

PERSPECTIVES OF NUCLEAR HEAT AND HYDROGEN

  • Lee, Won-Jae;Kim, Yong-Wan;Chang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제41권4호
    • /
    • pp.413-426
    • /
    • 2009
  • Nuclear energy plays an important role in world energy production by supplying 6% of the world's current total electricity production. However, 86% of the energy consumed worldwide to produce industrial process heat, to generate electricity and to power the transportation sector still originates in fossil fuels. To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels in these sectors is urgently required. Clean hydrogen energy is one such alternative. Clean hydrogen can play an important role not only in synthetic fuel production but also through powering fuel cells in the anticipated hydrogen economy. With the introduction of the high temperature gas-cooled reactor (HTGR) that can produce nuclear heat up to $950^{\circ}C$ without greenhouse gas emissions, nuclear power is poised to broaden its mission beyond electricity generation to the provision of nuclear process heat and the massive production of hydrogen. In this paper, the features and potential of the HTGR as the energy source of the future are addressed. Perspectives on nuclear heat and hydrogen applications using the HTGR are discussed.

국내 열병합발전사업의 기술적 생산효율성 추정 및 사업구조 평가: 16개 집단에너지사업자에 대한 패널 확률프론티어모형(SFA) 분석 (Evaluation of Technical Production Efficiency and Business Structure of Domestic Combined Heat and Power (CHP) Operators: Panel Stochastic Frontier Model Analysis for 16 Collective Energy Operators)

  • 임형우;김재혁;신동현
    • 자원ㆍ환경경제연구
    • /
    • 제30권4호
    • /
    • pp.557-579
    • /
    • 2021
  • 집단에너지는 에너지전환의 중간단계이자, 분산전원으로서 전력구조에 미치는 영향이 크다. 하지만 최근 일부 집단에너지사업자의 수익성 악화로 인해 집단에너지사업의 문제가 대두되고 있다. 본 연구는 우리나라 집단에너지사업자의 기술적 생산효율성 추정을 통해, 주요 사업자의 기술적 생산효율성을 측정하였으며 이를 바탕으로 사업자의 수익구조 개선방안을 살펴보았다. 16개 집단에너지사업자의 2016~19년 세부 재무 및 생산 자료를 수집한 후, 패널 확률 프론티어모형을 이용하여 사업자들의 기술적 생산효율성을 추정하였다. 추정 결과, 증기공급병행, 대형 전기중심, 소규모 구역전기, 역송CHP 사업자 순으로 생산효율성이 높음을 확인하였다. 더 나아가 수익성 영향요인에 대해 살펴본 결과, 기술적 생산효율성은 전반적으로 수익성과 양(+)의 영향 관계를 가지나, 소규모 구역전기사업자와 같이 열 생산 비중이 높은 사업자는 수익성이 악화됨을 확인하였다. 이는 현재 열 판매 시장의 구조적 한계로 인한 현상이며, 수익성 개선을 위해서는 열 판매단가에 대한 조정이 필요함을 확인하였다.

탄소제로 빌딩을 위한 전력변환 제어 (Power conversion control for zero emission buildings)

  • 한석우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.504-505
    • /
    • 2011
  • Decreasing actual greenhouse gas will be difficult if it is not solved addressed in architectural fields. Zero emission building or zero energy building, maximize the efficiency of energy, which means the building can operate by their own renewable energy facility without any other supplying. To be a zero emission building, a building needs realization of high efficiency low energy consumption, construction of building its own energy production facilities and lastly a power grid connection. According to increasing of DC load about TV, LED lighting, computer, IT in building for living and business, it is expected the save of energy when the system of AC power distribution change into the system of DC power distribution. Renewable energy exists a big different rate produced by outside environment. When electrical power overproduce, it can supply for system. Otherwise, if electrical power produce less, it can receive supply from system. Send and receive power can lead to zero to annual standard. This paper shows the simulation about efficient control of power conversion which is related to DC power distribution of architecture and DC output of renewable energy by using L-type converter.

  • PDF

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.