• Title/Summary/Keyword: energy and mineral resources

Search Result 713, Processing Time 0.032 seconds

A Study on the Rroperties of the Dusts from Ferroally Manufacture (합금철제조공정에서 발생되는 분진의 물성)

  • Shin, Kang-Ho;Song, Young-Jun;Hyun, Jong-Yeong;Cho, Young-Keun;Suh, Soon-Il;Park, Charn-Hoon;Cho, Dong-Sung
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.9-17
    • /
    • 1999
  • The study investrgated the properti es of lh$\xi$ dust~ from felToalloy manufacture, The chemical composition, composItron material, particle size and shapes of the bulk dust, sized dust and magnetically separated dust were llivestigated. As the result, we s suppose that the dust from HLgh Carbon Fenomauganesc Manufacturing Process is not sufficient as soource material of Mn because of the low Mn conteut (13.5%) aud complicated composition material The dust from Bag Filter of AOD Process is m mainly made up of $0.2~2\mu\textrm{m}$ $Mn_3O_4$ (Hausmatmite) particle in spherical shape and the Mn content is 63.1%. The dust from Cooler of AOD Process is mainly made up of coarse $Ca(OH)_2$ Mn, $Fe_yO_2$ $SiO_2$ and fine $Mn_3O_1$.

  • PDF

Development of a Groundwater Source Heat Pump in a Fractured Rock Aquifer (암반 대수층에서 개방형 지열 시스템의 개발 및 적용)

  • Shim, Byoung Ohan;Kim, Seong-Kyun;Choi, Hanna;Lee, Soo-Hyoung;Ha, Kyoochul;Kim, Yongchul
    • New & Renewable Energy
    • /
    • v.17 no.3
    • /
    • pp.32-41
    • /
    • 2021
  • A groundwater source heat pump (GWHP) was developed in this study by adapting a borehole heat exchanger with closed-loop and open-loop systems in a new building. In the pilot test building, the air-conditioning on the second floor was designed to employ a closed-loop system and that on the third floor had an open-loop system. The GWHP design is based on the feasibility of groundwater resources at the installation site. For the hydrogeological survey of the study site, pumping and injection tests were conducted, and the feasibility of GWHP installation was evaluated based on the air-conditioning load demand of the building. The site was found to be satisfactory for the design capacity of the thermal load and water quality. In addition, the effect of groundwater movement on the performance of the closed-loop system was tested under three different operational scenarios of groundwater pumping. The performance of the system was sustainable with groundwater flow but declined without appropriate groundwater flow. From long-term observations of the operation, the aquifer temperature change was less than 2℃ at the observation well and 5℃ at the injection well with respect to the initial groundwater temperature. This pilot study is expected to be of guidance for developing GWHPs at fractured rock aquifers.

Precipitaion of Acid Mine Drainage Using Coagulants and Flocculants (유기 및 무기응집제를 이용한 산성광산배수 침전 연구)

  • Oh, Taek-Geun;Hwang, Won-Jeong;Lee, Jong-Un;Cha, Jongmun
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.3-10
    • /
    • 2016
  • The passive treatment was required a large area for the treatment of acid mine drainage (AMD), and pollutants were discharged with mine drainage by the increased flow rate in summer. This study was performed to improve the turbidity and to precipitate the pollutants quickly using coagulants and flocculants in AMD of abandoned mine sites that were difficult to build the passive treatment system. The coagulant PAC (Poly aluminium chloride) and flocculant PAM (Polyacrylamide) were selected to improve turbidity in W mine waters. We also tested the particle size analysis, ICP-OES and/or SEM-EDS for water and sludge samples.

The Study on of Hydrogen Production Performance by Model Biomass-supercritical Water Gasification with Various Catalysts (다양한 촉매들을 통한 모델 바이오매스-초임계수 촉매 가스화에서 수소 생산 성능에 대한 연구)

  • Heo, Dong Hyun;Hwang, Jong Ha;Lee, Roosse;Sohn, Jung Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • In this study, the model biomass was used for hydrogen production by supercritical water gasification (SCWG). Model biomasses were glycerol, glycine, lignin and cellulose. The feed concentration was set to 1 wt%. Experiments were conducted in a reactor at $440^{\circ}C$ and above 26.3 MPa for 30 min. The effects of catalysts such as alkali metal salt ($K_2CO_3$ and $Na_2CO_3$) and transition metal salts ($Ni(NO_3)_2$, $Fe(NO_3)_3$ and $Mn(NO_3)_2$) on the gasification were systematically investigated. No tar or coke was observed in all experiments. The results showed that the gasification efficiency increased with various catalysts. For the cellulose and glycerol, all catalysts were effective for the promoted $H_2$ production compared with no catalyst. The significant decrease of $H_2$ production compared with no catalyst was observed with $Na_2CO_3$ and $Fe(NO_3)_3$ for glycine and lignin. respectively. The highest H2 production, 1.24 mmol was obtained for glycerol-SCWG with $Mn(NO_3)_2$. Conclusively, the addition of $Mn(NO_3)_2$ enhanced all model biomass gasification efficiency and increased the hydrogen production promoting the supercritical water reaction.

Comparison of Bioleaching Kinetics of Spent Catalyst by Adapted and Unadapted Iron & Sulfur Oxidizing Bacteria - Effect of Pulp Density; Particle Size; Temperature

  • Pradhan, Debabrata;Kim, Dong-Jin;Ahn, Jong-Gwan;Gahan, Chandra Sekhar;Chung, Hun-Saeng;Lee, Seoung-Won
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.956-966
    • /
    • 2011
  • Bioleaching studies of metals from a spent catalyst were conducted using both adapted and unadapted bacterial cultures. The bacterium used in this experiment was Acidithiobacillus ferrooxidans. A comparison of the kinetics of leaching was made between the two cultures by varying the leaching parameters, including the pulp density, particle size and temperature. Both cultures showed similar effects with respect to the above parameters, but the leaching rates of all metals were higher with the adapted compared to the unadapted bacterial cultures. The leaching reactions were continued for 240 h in the case of the unadapted bacterial culture, but only for 40 h in the case of the adapted bacterial culture. The leaching reactions followed first order kinetics. In addition, the kinetics of leaching was concluded to be a diffusion control model; therefore, the product layers were impervious.

Utilizing Abandoned Mines in Regional Development: Feasibility of Underground Data Centers and Public Sports Facilities (폐광지역발전을 위한 폐광산 활용방안 연구: 지하 데이터센터 및 공공체육시설로의 운용성 평가)

  • Hyeong-Geol Kim;Ganghui Kim;Sanghyun Bin;Won-Sik Woo;Jongmun Cha;Chang-Uk Hyun
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.737-753
    • /
    • 2023
  • Abandoned mines represent unused space resulting from resource use and changes in industrial environments. Efforts are underway to repurpose such underground spaces, leveraging their unique attributes of temperature stability, shading, and security. This study aimed to assess the feasibility of operating high-demand data centers and public sports facilities as potential recycling options for abandoned mine spaces. The status of data centers located in abandoned mines abroad was examined, including their operational technology capitalizing on the advantages of underground spaces. Considering the varying sizes of underground spaces in different types of abandoned mine in South Korea, the suitability of installing facilities for 12 different sports was evaluated for potential contributions to the health and welfare of local residents. The utilization of abandoned mine spaces as data centers and public sports facilities is expected to not only recycle industrial heritage but also to allow new development opportunities for local communities.

21세기 광물자원과 우리의 환경

  • 오민수
    • Proceedings of the KSEEG Conference
    • /
    • 2002.10a
    • /
    • pp.53-67
    • /
    • 2002
  • As in the past, we are concerned today with the magnitudes of mineral resources and the adequacy of these resources to meet future needs. In looking at global resource issues, we should consider the need for the resource, its supply, and the environmental consequences of using it. The need for a resource can become a resource dependency, specially as the global population expands and each of us becomes Increasingly dependent upon hundreds of natural materials. Therefore, our great mineral consumption makes the human population a true “Geologic Force”, which will be even more significant in the future when the global population is projected to reach alarming proportions. Although our supplies of mineral resources probably will be sufficient for the 21st century, the uneven distribution of minerals in the Earth's crust almost certainly will continue to be a major problem. The most likely result will be major shifts in both prices and sources of supply of many mineral resources. As for energy resources, we must avoid an obsessive dependency on one fuel and expand instead to other energy resources. Finally, because the use of resources affects the environment, we need to focus on resource exploitation and global pollution, particularly in regard to ground water and arable land. We must manage our resources so as to be in balance with our environment. And the accelerated industrialization of South Korean economy over the last three decades has resulted in the mass consumption of mineral commodities. South Korea has around 50 useful mineral commodities for the mineral industry, among 330 kinds of minerals described. The component ratio of the mining industry sector of the gross national production(GNP) in South Korea dropped from 1.2% in 1971 to 0.34% in 1997 due to the rapid growth of other industries in the country. During the period from 1971 to 1997, the average growth rate of mineral consumption in South Korea was 9.13% yearly and that of GMP per capita was 14.97%. The mineral consumptions per capita showed a continual increase during the last 30 years as follows(parenthesis: GW per capita); 0.99 metric tons in 1997($289), 3.83 metric tons in 1989($5, 210), 6.11 metric tons in 1995 ($10, 037), and 6.66 metric tons in 1997($9, 511). The total amount of mineral consumption in South Korea was 33 million tons of 32 mineral commodities in 1971, and 306 million metric tons of 47 mineral commodities in 1997.

  • PDF

P-Impedance Inversion in the Shallow Sediment of the Korea Strait by Integrating Core Laboratory Data and the Seismic Section (심부 시추코어 실험실 분석자료와 탄성파 탐사자료 통합 분석을 통한 대한해협 천부 퇴적층 임피던스 도출)

  • Snons Cheong;Gwang Soo Lee;Woohyun Son;Gil Young Kim;Dong Geun Yoo;Yunseok Choi
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.138-149
    • /
    • 2023
  • In geoscience and engineering the geological characteristics of sediment strata is crucial and possible if reliable borehole logging and seismic data are available. To investigate the characteristics of the shallow strata in the Korea Strait, laboratory sonic logs were obtained from deep borehole data and seismic section. In this study, we integrated and analyzed the sonic log data obtained from the drilling core (down to a depth of 200 m below the seabed) and multichannel seismic section. The correlation value was increased from 15% to 45% through time-depth conversion. An initial model of P-wave impedance was set, and the results were compared by performing model-based, band-limited, and sparse-spike inversions. The derived P-impedance distributions exhibited differences between sediment-dominant and unconsolidated layers. The P-impedance inversion process can be used as a framework for an integrated analysis of additional core logs and seismic data in the future. Furthermore, the derived P-impedance can be used to detect shallow gas-saturated regions or faults in the shallow sediment. As domestic deep drilling is being performed continuously for identifying the characteristics of carbon dioxide storage candidates and evaluating resources, the applicability of the integrated inversion will increase in the future.

Worldwide Trend and Korean Recent Status in the Supply-Demand for Resources -The Current Situation of Recycling Technology for Waste Resources in Korea(1)- (자원수급(資源需給)의 세계적(世界的)인 추세(趨勢)와 우리나라의 동향(動向) -국내자원(國內資源)의 유효이용(有效利用)을 위한 처리(處理) 및 회수기술(回收技術) 동향조사(動向調査)(1)-)

  • Oh, Jae-Hyun;Kim, Mi-Sung;Cho, Sung-Baek
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.3-19
    • /
    • 2006
  • Sustainable supply of minerals and energy is global problem. Metals and energy consumption in the world has increased with economic growth. Currently more than 40 metals are systematically extracted and used in many different fields in civilized society. Recycling and reuse have become very important because recycling contributes to supplying the materials and protecting the environment of society. It is not realistic that all waste materials are capable of being recycled, because recycling metals have fundamentally been competing with primary production. In this point of view, prior to discuss on current recycling technology of waste resources in Korea, world wide trend and Korean recent activity in the supply-demand far minerals and energy resources are reviewed.

A Study on the Model Test for Pneumatic Mine-Filling (공압식 갱내충전을 위한 모형실험 연구)

  • Yang, In-Jae;Shin, Dong-Choon;Yoon, Byung-Sik;Mok, Jin-Ho;Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.449-463
    • /
    • 2014
  • There are many case studies and application cases in abandoned mines for hydraulic filling method filled by slurry or paste form, but research on the pneumatic filling is not applied in Korea. The damage of steel pipe is occurred by wear due to the flow of filling material in the bent area of steel pipe in traditional pneumatic filling method. In this study, the new pneumatic filling method was developed using a newly devised improved nozzle to improve the above problem. The model test for mine filling was performed in the laboratory for the simulated accessible or inaccessible mine cavities, and the filling efficiency by the results obtained from the test was calculated. The filling efficiency was analyzed from the variation of outlet angle, feed rate and grain size of sand in model test of simulated accessible mine cavity. The superiority of improved pneumatic filling method was proved through the analysis of filling efficiency by the results obtained from each model tests of gravitational, traditional, and improved filling method in simulated inaccessible mine cavity.