• Title/Summary/Keyword: energetic plasticizer

Search Result 7, Processing Time 0.02 seconds

Systhesis and Characterization of energetic plasticizers, Formal (포르말계 에너지화 가소제의 합성 및 특성분석)

  • 김진석;이근득;조진래
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.49-56
    • /
    • 2002
  • For the purpose of the increase in the performance and thermal stability of PBX's, the mixed formal consisting of BDNPF, DNPBF and BDNBF were synthesized. In order to find out the optimal condition for the synthesis of energetic plasticizer, BDNPF, DNPBF and BDNBF, the synthetic procedures have been investigated. We synthesized DNP-OH and DNB-OH through oxidative nitration and controlled various composition of mixed formal by $H_{2}SO_{4}$ and s-trioxane to investigate optimal composition, and then characterized its thermo-physical properties.

Synthesis and Characterization of 1-DABTR as Insensitive Energetic Plasticizer (둔감 에너지 가소제 1-DABTR의 합성 및 특성 평가)

  • Lee, Woonghee;Kim, Minjun;Park, Youngchul;Lee, Bumjae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.32-38
    • /
    • 2017
  • Plasticizers play roles in increasing plasticity or fluidity during mixing. Representative plasticizers are DOS, DOA, IDP and BTTN. In particular, BTTN is an energy plasticizer that helps propellant performance and is widely used. However these compounds are sensitive relatively. So, in order to develop insensitive energetic plasticizer, synthesis of one of the derivatives of triazole, 4,5-bis (azido methyl)-(1-butyl)-1,2,3-triazole (1-DABTR), was studied. Also, the compound was characterized by NMR, IR spectroscopy, and physicochemical properties such as glass transition temperature, melting point, decomposition temperature, density, viscosity and impact sensitivity were measured. In addition, the heats of formation (${\Delta}H_f$) of 1-DABTR was also calculated using Gaussian 09.

The Study on the Synthesis of Triazole Derivatives as Energetic Plasticizer (트리아졸 계열의 에너지 가소제 합성 연구)

  • Lee, Woonghee;Kim, Minjun;Park, Youngchul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.31-38
    • /
    • 2016
  • Most of propellants that is used widely in the world release toxic gases such as methane gas and carbon dioxide during combustion which are noxious to the environment. This study established a synthetic process of a high nitrogen containing derivative of triazole, 4,5-bis(azidomethyl)-methyl-1,2,3-triazole (DAMTR), which can be applied as energetic plasticizer to environmental concerns. Also, the compound was characterized by NMR, IR spectroscopy, and physical properties such as glass transition temperature, melting point, decomposition temperature, density, impact sensitivity, viscosity and volatility were measured. In addition, the heats of formation (${\Delta}H_f$) and detonation properties (pressure and velocity) of DAMTR were calculated using Gaussian 09 and EXPLO5 programs.

Synthesis and Characterization of Insensitive Energetic Plasticizer (둔감 에너지 가소제 합성 및 특성 분석)

  • Lee, Woonghee;Kim, Minjun;Park, Youngchul;Lee, Bumjae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.11-17
    • /
    • 2016
  • BTTN and TMETN are representative energetic plasticizers used for various propellants. However these compounds are sensitive relatively. So, in order to develop insensitive energetic plasticizer, this study attempted to synthesize derivative of triazole, 4,5-bis(azidomethyl)-(2-methoxyethyl)-1,2,3- triazole (DAMETR). Also, the prepared compound was characterized by NMR, IR spectroscopy, and physicochemical properties such as glass transition temperature, melting point, decomposition temperature, density, viscosity and impact sensitivity. In addition, the heats of formation (${\Delta}H_f$) and detonation properties (pressure and velocity) of DAMETR were calculated using Gaussian 09 and EXPLO5 programs. Especially, 1-DAMETR(>50 J) was more insensitive than BTTN(1 J) and TMETN(9.2 J).

Study on the Formulation of an Energetic Thermoplastic Propellant(I) (고에너지 열가소성 추진제 제조 및 특성연구(I))

  • Jeong, Jae-Yun;Song, Jong Kwon;Kim, Yoon-Gon;Lee, Byeong Gil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.71-78
    • /
    • 2019
  • This paper describes the formulation and properties of a recently developed energetic thermoplastic (ETPE) propellant, which is composed of 45% of newly synthesized glycidyl azide polymer, energetic plasticizer (DEGDN) and nitramine oxidizer (RDX). Compared to conventional thermoplastic propellants, the new ETPE propellant showed approximately 7% higher performance and exhibited similar mechanical properties but a lower burn rate and a higher pressure exponent.

Study on the Formulation of an Energetic Thermoplastic Propellant and its Properties(II) (고에너지 열가소성 추진제 제조 및 특성연구(II))

  • Kim, Han-cheol;Park, Eui-Yong;Jeong, Jea-Yun;Kim, Yoon-Gon;Choi, Sung-han;Kang, Tae-won;Oh, Kyeong-won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2020
  • In this study, measurement and analysis results from Differential scanning calorimetry(DSC) and Thermogravimetric analysis(TGA) on the newly developed high-energy thermoplastic elastomer(ETPE) propellant are described, followed by the previous study done under the same title as this paper [1]. The characteristics of high-energy thermoplastic propellant were also verified by conducting thermal analysis, and the LSGT, Shotgun & RQ Bomb test, was carried out as well. High energetic thermoplastic binders containing 45% of GAP(Glycidyl Azide Polymer), energetic plasticizer(DEGDN) and Oxidizer Aonium Perchlorate), RDX(reseach development explosive, cyclotrimethylenetrinitramine) were used to formulate the propellant.

Development of the formulation and the process of DXD-19 sheet explosive (판상 화약 DXD-19 조성 및 성형 공정개발)

  • Cheun Young Gu;Lee Jin Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.129-139
    • /
    • 2004
  • DXD-19 is a flexible sheet explosive, which is a new polymer-bonded explosives(PBX's). DXD-19 is relatively insensitive and can be extruded into various configurations to be applied to munitions. A typical application includes multi-point initiation for the warhead, cutting/severance devices and transfer lines. The DXD-19 composition employs a binder system derived from the thermoplastic elastomer(HyTemp 4454) containing $5\%$ OH terminated with isocyanate curable for increasing mechanical properties. The use of an elastomer CAB increases its mechanical properties and the use of an energetic plasticizer BDNPF/BDNPA(F/A) improves the process ability as well as energy contents. The composition of the extruded DXD-19 formulation is formed $\%$ weight of $PETN/HyTemp/ATEC/(F/A)/CAB=72\~73/12\~13/6\~7/6\~7/1\~2$. Our safety tests of DXD-19 shows Insensitivity to an impact test and friction test, good thermal stability and excellent mechanical properties.