• Title/Summary/Keyword: endotoxin removal

Search Result 11, Processing Time 0.017 seconds

Expression in Eschepichia coli of a Cloned Bacillus thuringiensis subsp. kurstaki HDI In-secticidal Protein Gene. (클로닝된 Bacillus thuringiensis subsp. kurstaki HDI 살충성 단백질 유전자의 대장균에서의 발현)

  • 황성희;차성철;유관희;이형환
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.497-506
    • /
    • 1998
  • The expression in Escherichia coli of a cloned insecticidal protein (ICP) gene from Bacillus thuringiensis var. kurstaki HD1 in pHLN1-80 (+) and pHLN2-80(-) plasmids was investigated through deletions in promoters, transcription start point, and termination region. Six recombinant plasmids were constructed in an attempt to analyze the overexpression of the ICP in relations to its gene structure. The amounts of ICP produced from the recombinants were measured by SDS-PAGE and confirmed by Western blot analysis. One clone was not overexpressed which having only -80 bp (contained BtI promoter) part of the ICP gene promoter (without Plac promoter), the right-oriented ICP gene and the termination region. Removal of 350 bp from upstream region of the Plac of the clone pHLN2-80 (-) resulted in overexpression of the ICP. One clone was not overexpressed in which the clone consisted of -72 bp part of the ICP promoter without the transcription start point and the transcriptional termination region, and having the right-oriented ICP gene sequence. One clone consisting of the inverted ICP gene sequence, the -72 bp ICP gene promoter, and without the termination region caused overexpression. One clone which consisted of the inverted ICP gene, the -72 bp ICP gene promoter and the termination sequence was overexpressed. These results indicated that the Plac promoter, transcription termination region, the inverted ICP gene insertion, and the -80 bp or -72 bp part of the ICP gene promoters were concerned in the overexpression of the ICP gene in the recombinant plasmid, and also the overexpression mechanism might result from the disruption of the transcription-suppressing regions in the promoter regions.

  • PDF