• Title/Summary/Keyword: endothelial cells

검색결과 1,279건 처리시간 0.032초

Sitagliptin attenuates endothelial dysfunction independent of its blood glucose controlling effect

  • Chang, Xin-Miao;Xiao, Fei;Pan, Qi;Wang, Xiao-Xia;Guo, Li-Xin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.425-437
    • /
    • 2021
  • Although the contributions of sitagliptin to endothelial dysfunction in diabetes mellitus were previously reported, the mechanisms still undefined. Autophagy plays an important role in the development of diabetes mellitus, but its role in diabetic macrovascular complications is unclear. This study aims to observe the effect of sitagliptin on macrovascular endothelium in diabetes and explore the role of autophagy in this process. Diabetic rats were induced through administration of high-fat diet and intraperitoneal injection of streptozotocin. Then diabetic rats were treated with or without sitagliptin for 12 weeks. Endothelial damage and autophagy were measured. Human umbilical vein endothelial cells were cultured either in normal glucose or in high glucose medium and intervened with different concentrations of sitagliptin. Rapamycin was used to induce autophagy. Cell viability, apoptosis and autophagy were detected. The expressions of proteins in c-Jun N-terminal kinase (JNK)-Bcl-2-Beclin-1 pathway were measured. Sitagliptin attenuated injuries of endothelium in vivo and in vitro. The expression of microtubuleassociated protein 1 light chain 3 II (LC3II) and beclin-1 were increased in aortas of diabetic rats and cells cultured with high-glucose, while sitagliptin inhibited the over-expression of LC3II and beclin-1. In vitro pre-treatment with sitagliptin decreased rapamycin-induced autophagy. However, after pretreatment with rapamycin, the protective effect of sitagliptin on endothelial cells was abolished. Further studies revealed sitagliptin increased the expression of Bcl-2, while inhibited the expression of JNK in vivo. Sitagliptin attenuates injuries of vascular endothelial cells caused by high glucose through inhibiting over-activated autophagy. JNK-Bcl-2-Beclin-1 pathway may be involved in this process.

저근백피성분의 생리활성에 관한 연구(III) - 디클로드메탄분획의 항암작용 - (Studies on the Biological Activities of the Constituents of Ailanthi Cortex Radicis III - Antitumor activities of dichloromethane fration -)

  • 김종;이정규
    • 생약학회지
    • /
    • 제28권1호
    • /
    • pp.54-58
    • /
    • 1997
  • The cytotoxic activities of methanolic extract and its fractions of Ailanthi Cortex Radicis and column chromatographic eluates of its dichloromethane fraction (DCM fr.) were investigated. DCM fr. Showed the strongest cytotoxicity against hepatoma cells. Furthermore, the active equates 1-3, 8 and 9 were obtained. Effects on free radical generation and the growth of vascular endothelial cells were tested to elucidate the action mechanism of anticancer activity. Eluates 1-3 stimulated free radical generation, while eluates 8 and 9 showed no changes. Especially, eluates 8 and 9 efffectively inhibited the proliferation of vascular endothelial cells in a dose- dependant manner. It is speculated that the anticancer effects of eluates 1-3, 8 and 9 might be due to free radical generation and inhibition of endothelial cell growth, respectively.

  • PDF

Prostaglandin $F_2{\alpha}$ Controls Reactive Oxygen Species in Bovine Corpus Luteum

  • Lee, Seunghyung;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • 제39권1호
    • /
    • pp.1-6
    • /
    • 2015
  • Luteolysis is a cyclical regression of the corpus luteum in many non-primate mammalian species. Prostaglandin $F_2{\alpha}$($PGF_2{\alpha}$) from the uterus and ovary induces functional and structural luteolysis in bovine. The action of $PGF_2{\alpha}$ is mediated by $PGF_2{\alpha}$ receptor located on the luteal steroidogenic and endothelial cell membranes. $PGF_2{\alpha}$ plays an important role in regulating nitric oxide production in endothelial cells of the bovine corpus luteum. Nitric oxide production and nitric oxide synthase activity are stimulated and induced by $PGF_2{\alpha}$ in luteal endothelial cells. Moreover, the reactive oxygen species inhibits progesterone secretion in bovine luteal cells and induces apoptosis. Thus, the interaction between $PGF_2{\alpha}$ and reactive oxygen species provides important aspects in physiology of the corpus luteum forfunctional and structural luteolysis.

Shear Stress and Atherosclerosis

  • Heo, Kyung-Sun;Fujiwara, Keigi;Abe, Jun-Ichi
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.435-440
    • /
    • 2014
  • Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flowdependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis.

Korean Red Ginseng Extract inhibits Tumor Necrosis Factor-alpha-induced Monocyte Adhesion in the Human Endothelial Cells

  • Joo, Hee-Kyoung;Lee, Sang-Ki;Kim, Hyo-Shin;Song, Yun-Jeong;Kang, Gun;Park, Jin-Bong;Lee, Kwon-Ho;Cho, Eun-Jung;Lee, Jae-Hwan;Seong, In-Whan;Kim, Se-Hoon;Cho, Chung-Hyun;Jeon, Byeong-Hwa
    • Journal of Ginseng Research
    • /
    • 제32권3호
    • /
    • pp.244-249
    • /
    • 2008
  • Vascular inflammation is an important step in the development of cardiovascular disorder. Since it has not been known whether Korean red ginseng has a role to play on the vascular inflammation, we investigated the effects of Korean red ginseng extract (KRGE) on monocyte adhesion and its underlying signaling mechanism. Monocyte adhesion assay and Western blot were conducted on the human umbilical vein endothelial cells to study monocyte adhesion and the expression of adhesion molecules. Intracellular calcium was measured with Fura-2 fluorescent staining, and superoxide production was measured with lucigenin chemiluminescence in the endothelial cells. KRGE inhibits tumor necrosis factor (TNF)-alpha-induced monocyte adhesion on the endothelial cells at the range of $0.03{\sim}1$ mg/ml. TNF-alpha-induced vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1 expression were inhibited by the pretreatment of KRGE in the endothelial cells. KRGE also inhibits TNF-alpha-induced intracellular calcium and the superoxide production in the endothelial cells. This study first demonstrated that KRGE inhibits TNF-alpha-induced monocyte adhesion by inhibiting the adhesion molecule expression, intracellular calcium and superoxide production in the endothelial cells. Therefore, the anti-inflammatory function of KRGE may be contributed to protecting the endothelial dysfunction in the vascular inflammatory disorders.

HO-1 Induced by Cilostazol Protects Against TNF-${\alpha}$-associated Cytotoxicity via a PPAR-${\gamma}$-dependent Pathway in Human Endothelial Cells

  • Park, So-Youn;Bae, Jin-Ung;Hong, Ki-Whan;Kim, Chi-Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권2호
    • /
    • pp.83-88
    • /
    • 2011
  • A large body of evidence has indicated that induction of endogenous antioxidative proteins seems to be a reasonable strategy for delaying the progression of cell injury. In our previous study, cilostazol was found to increase the expression of the antioxidant enzyme heme oxygenase-1 (HO-1) in synovial cells. Thus, the present study was undertaken to examine whether cilostazol is able to counteract tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced cell death in endothelial cells via the induction of HO-1 expression. We exposed human umbilical vein endothelial cells (HUVECs) to TNF-${\alpha}$ (50 ng/ml), with or without cilostazol ($10{\mu}M$). Pretreatment with cilostazol markedly reduced TNF-${\alpha}$-induced viability loss in the HUVECs, which was reversed by zinc protoporphyrine IX (ZnPP), an inhibitor of HO-1. Moreover, cilostazol increased HO-1 protein and mRNA expression. Cilostazol-induced HO-1 induction was markedly attenuated not only by ZnPP but also by copper-protoporphyrin IX (CuPP). In an assay measuring peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$) transcription activity, cilostazol directly increased PPAR-${\gamma}$ transcriptional activity which was completely abolished by HO-1 inhibitor. Furthermore, increased PPAR-${\gamma}$ activity by cilostazol and rosiglitazone was completely abolished in cells transfected with HO-1 siRNA. Taken together, these results indicate that cilostazol up-regulates HO-1 and protects cells against TNF-${\alpha}$-induced endothelial cytotoxicity via a PPAR-${\gamma}$-dependent pathway.

골막기원세포의 조골세포 분화과정에서 나타나는 혈관내피전구세포의 증식 (PROLIFERATION OF ENDOTHELIAL PROGENITOR CELLS BY OSTEOGENIC DIFFERENTIATION OF PERIOSTEAL-DERIVED CELLS)

  • 김종렬;송정호;김욱규;박봉욱;하영술;김진현;김덕룡;조영철;성일용;변준호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권4호
    • /
    • pp.205-212
    • /
    • 2009
  • Purpose : The purpose of this study was to examine the expression of various angiogenic factors during osteoblastic differentiation of periostealderived cells and the effects of osteogenic inductive medium of periosteal-derived cells on the proliferation of endothelial progenitor cells. Materials and methods : Periosteal-derived cells were obtained from mandibular periosteums and introduced into the cell culture. After passage 3, the cells were divided into two groups and cultured for 21 days. In one group, the cells were cultured in the DMEM supplemented with osteogenic inductive agent, including 50g/ml L-ascorbic acid 2-phosphate, 10 nM dexamethasone and 10 mM -glycerophosphate. In the other group, they were cultured in DMEM supplemented without osteogenic inductive agent. VEGF isoforms, VEGFR-1, VEGFR-2, and neuropilin-1 mRNA expression was observed. Human umbilical cord blood-derived endothelial progenitor cell proliferation was also observed. Results : The expression of VEGF isoforms was higher in osteogenic inductive medium than in non-osteogenic inductive medium. The expression of VEGFR-2 was also higher in osteogenic inductive medium than in non-osteogenic inductive medium. However, the expression of VEGFR-1 and neuropilin-1 was similar in both osteogenic inductive medium and non-osteogenic inductive medium. In addition, conditioned medium from differentiated periosteal-derived cells stimulated human umbilical cord blood-derived endothelial progenitor cell numbers compared to conditioned medium from non-differentiated periosteal-derived cells. Conclusion : These results suggest that in vitro osteoblastic differentiation of periosteal-derived cells has angiogenic capacity to support endothelial progenitor cell numbers.

Gentisyl Alcohol, an Antioxidant from Microbial Metabolite, Induces Angiogenesis In Vitro

  • Kim Hye-Jin;Kim Jin-Hee;Lee Choong-Hwan;Kwon Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.475-479
    • /
    • 2006
  • Gentisyl alcohol isolated from Penicillium sp. has an antioxidative activity, protecting cells from oxidative stresses. From our in vitro angiogenesis assays with bovine aortic endothelial cells (BAECs), gentisyl alcohol was newly identified as a pro-angiogenic small molecule that induces new blood vessel formation of the cells. Gentisyl alcohol stimulated the proliferation of BAECs in a dose-dependent manner. Moreover, it induced in vitro angiogenesis of BAECs such as invasiveness, migration, and tube formation of the endothelial cells. Effects of gentisyl alcohol on invasion and tube formation were also dose-dependent. These results demonstrate that gentisyl alcohol could affect the angiogenic phenotypes of endothelial cells and be developed as a new small molecule with pro-angiogenic activity.

Saxatilin Suppresses Tumor-induced Angiogenesis by Regulating VEGF Expression in NCI-H460 Human Lung Cancer Cells

  • Jang, Yoon-Jung;Kim, Dong-Seok;Jeon, Ok-Hee;Kim, Doo-Sik
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.439-443
    • /
    • 2007
  • Tumor growth and metastasis are dependent on angiogenesis, and endothelial cell invasion and migration are apparent means of regulating tumor progression. We report here that saxatilin, a snake venom-derived disintegrin, suppresses the angiogenesis-inducing properties of NCI-H460 human lung cancer cells. Culture supernatants of NCI-H460 cells are able to induce human umbilical vascular endothelial cell (HUVEC) invasion and tube formation. However, treatment of the cancer cells with saxatilin resulted in reduced angiogenic activity of the culture supernatant. This suppressed angiogenic property was found to be associated with the level of vascular endothelial growth factor (VEGF) in the culture supernatant. Further experimental evidence indicated that saxatilin inhibits VEGF production in NCI-H460 cells by affecting hypoxia induced factor-1$\alpha$ (HIF-1$\alpha$) expression via the Akt pathway.

균일한 전단응력에 의한 혈관내피세포의 운동성 변화 (EFFECTS OF UNIFORM SHEAR STRESS ON THE MIGRATION OF VASCULAR ENDOTHELIAL CELL)

  • 신현정;송석현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1404-1408
    • /
    • 2008
  • The migration and proliferation of vascular endothelial cells (VEC), which play an important role in vascular remodeling, are known to be regulated by hemodynamic forces in the blood vessels. When shear stresses of 2, 6, 15 dynes/$cm^2$ are applied on mouse micro-VEC in vitro, cells surprisingly migrate against the flow direction at all conditions. While higher flow rate imposes more resistance against the cells, reducing their migration speed, the horizontal component of the velocity parallel to the flow increases with the flow rate, indicating the higher alignment of cells in the direction parallel to the flow at a higher shear stress. In addition, cells exhibit substrate stiffness and calcium dependent migration behavior, which can be explained by polarized remodeling in the mechanosensitive pathway under shear stress.

  • PDF