• Title/Summary/Keyword: endothelial cell function

Search Result 117, Processing Time 0.031 seconds

Hepatocyte Growth Factor and Met: Molecular Dialogue for Tissue Organization and Repair

  • Matsumoto, Kunio;Nakamura, Toshikazu
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • Hepatocyte growth factor (HGF), originally discovered and cloned as a powerful mitogen for hepatocytes, is a four kringle-containing growth factor which specifically binds to membrane-spanning tyrosine kinase, c-Met/HGF receptor. HGF has mitogenic, motogenic (enhancement of cell movement), morphogenic (e.g., induction of branching tubulogenesis), and anti-apoptotic activities for a wide variety of cells. During embryogenesis, HGF supports organogenesis and morphogenesis of various tissues, including liver, kidney, lung, gut, mammary gland, and tooth. In adult tissues HGF elicits an organotrophic function which supports regeneration of organs such as liver, kidney, lung, and vascular tissues. HGF is also a novel member of neurotrophic factor in nervous systems. Together with the preferential expression of HGF in mesenchymal or stromal cells, and c-Met/HGF receptor In epithelial or endothelial cells, the HGF-Met coupling seems to orchestrate dynamic morphogenic processes through epithelial-mesenchymal (or-stromal) interactions for organogenesis and organ regeneration. HGF or HGF gene may well become unique therapeutic tools for treatment of patients with various organ failure, through its actions to reconstruct organized tissue architectures. This review focuses on recently characterized biological and physiological functions integrated by HGF-Met coupling during organogenesis and organ regeneration.

  • PDF

Inhibition of LPA5 Activity Provides Long-Term Neuroprotection in Mice with Brain Ischemic Stroke

  • Sapkota, Arjun;Park, Sung Jean;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.512-518
    • /
    • 2020
  • Stroke is a leading cause of long-term disability in ischemic survivors who are suffering from motor, cognitive, and memory impairment. Previously, we have reported suppressing LPA5 activity with its specific antagonist can attenuate acute brain injuries after ischemic stroke. However, it is unclear whether suppressing LPA5 activity can also attenuate chronic brain injuries after ischemic stroke. Here, we explored whether effects of LPA5 antagonist, TCLPA5, could persist a longer time after brain ischemic stroke using a mouse model challenged with tMCAO. TCLPA5 was administered to mice every day for 3 days, starting from the time immediately after reperfusion. TCLPA5 administration improved neurological function up to 21 days after tMCAO challenge. It also reduced brain tissue loss and cell apoptosis in mice at 21 days after tMCAO challenge. Such long-term neuroprotection of TCLPA5 was associated with enhanced neurogenesis and angiogenesis in post-ischemic brain, along with upregulated expression levels of vascular endothelial growth factor. Collectively, results of the current study indicates that suppressing LPA5 activity can provide long-term neuroprotection to mice with brain ischemic stroke.

DENTAL MANAGEMENT OF LEUKOCYTE DEFICIENCY IN A CHILD WITH SEVERE ORAL INVOLVEMENT (백혈구 접착 결핍 증후군 환아의 치과적 처치)

  • Kim, Hyun-Jin;Lee, Nan-Young;Lee, Sang-Ho
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.3 no.1
    • /
    • pp.26-30
    • /
    • 2007
  • Leukocyte adhesion deficiency(LAD) is a rare autorecessive defect of phagocytic function resulting from a lack of leukocyte cell surface expression of ${\beta}_2$ integrin molecules(CD 18) that are essential for leukocyte adhesion to endothelial cells and chemotaxis. As a results, patients with LAD suffer from severe bacterial infections and impaired wound healing. A small number of patients with leukocyte adhesion deficiency-1 have a milder defect, with residual expression of CD18. These patients tend to survive beyond infancy; they manifest progressive severe periodontitis, alveolar bone loss, periodontal pocket formation, and partial or total premature loss of the primary and permanent dentitions. In this report, we report on a 7 year old girl with severe oral involvement. The most import focus should be to control infections to reduce the risk for future infection.

  • PDF

Subtilisin QK, a Fibrinolytic Enzyme, Inhibits the Exogenous Nitrite and Hydrogen Peroxide Induced Protein Nitration, inVitro and inVivo

  • Ko, Ju-Ho;Yan, Junpeng;Zhu, Lei;Qi, Yipeng
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.577-583
    • /
    • 2005
  • Subtilisin QK, which is newly identified as a fibrinolytic enzyme from Bacillus subtilis QK02, has the ability of preventing nitrotyrosine formation in bovine serum albumin induced by nitrite, hydrogen peroxide and hemoglobin in vitro verified by ELISA, Western-blot and spectrophotometer assay. Subtilisin QK also attenuates the fluorescence emission spectra of bovine serum albumin in the course of oxidation caused by nitrite, hydrogen peroxide and hemoglobin. Furthermore, subtilisin QK could suppress the transformation of oxy-hemoglobin to met-hemoglobin caused by sodium nitrite, but not the heat-treated subtilisn QK. Compared with some other fibrinolytic enzymes and inactivated subtilisin QK treated by phenylmethylsulfonylfluoride, the ability of inhibiting met-hemoglobin formation of subtilisin QK reveals that the anti-oxidative ability of subtilisin QK is not concerned with its fibrinolytic function. Additionally, nitrotyrosine formation in proteins from brain, heart, liver, kidney, and muscle of mice that is intramuscular injected the mixture of nitrite, hydrogen peroxide and hemoglobin is attenuated by subtilisin QK. Subtilisin QK can also protect Human umbilical vein endothelial cell (ECV-304) from the damage caused by nitrite and hydrogen peroxide.

Beyond the Molecular Facilitator, CD82: Roles in Metastasis Suppressor, Stem Cell Niche, Muscle Regeneration, and Angiogenesis (분자 촉진제를 넘어, CD82: 전이억제자, 줄기세포 니쉬, 근육 재생 및 혈관신생에서의 역할)

  • Lee, Hyun-Chae;Han, Jung-Hwa;Hur, Jin
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.856-861
    • /
    • 2021
  • CD82/KAI1, identified as a metastasis suppressor, was initially known only as a molecular facilitator, but its various functions have recently been revealed. CD82 plays an important role in the stem-progenitor cell, angiogenesis, and muscle. We would like to introduce the recently reported functions and roles of CD82 in this review. CD82 is a member of the tetraspanin family, which consists of four transmembrane domains. The interaction between CD82 and cell adhesion molecules suppresses the metastasis of cancer. CD82 regulates the cell cycle of stem-progenitor cells in the stem cell niche. In the bone marrow, CD82 is expressed on long-term repopulating hematopoietic stem cells (LT-HSCs), which show multipotent differentiation potential. The interaction between CD82 and Duffy antigen receptor for chemokines (DARC) induces quiescence in LT-HSCs. CD82 also regulates Rac1 activity, resulting in the homing and engraftment of HSCs into the bone marrow niche. Besides, CD82 maintains the differentiation potential of muscle stem cells and prevents angiogenesis by inhibiting the expression of cytokines, such as IL-6 and VEGF and adhesion molecules in endothelial cells. CD82 is a key membrane protein that distinguishes the hierarchy of stem-progenitor cells, and is also important for amplification and verification of cellular resources. Further studies on the function of CD82 in various organs and cells are expected to advance cell biology and cell therapy.

Immunohistochemical Study of C-erbB-2 and VEGF Expression in Non-Small Cell Lung Cancer (비소세포 폐암에서 C-erbB-2와 VEGF 발현에 대한 면역조직화학적 연구)

  • Shin, Jong Wook;Ha, Kyung Won;Choi, Jae Cheol;Kim, Jae Yeol;Park, In Whon;Choi, Byoung Whui;Yoo, Jae Hyung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • Background: Mutated or deregulated expression of C-erbB-2 causes this gene to function as a potent oncogene. Vascular endothelial growth factor (VEGF) is a crucial angiogenic molecule in lung cancer. Both C-erbB-2 and VEGF can promote growth, proliferation and metastasis in non-small cell lung cancer (NSCLC). The purpose of this study was to investigate evaluate the relationship between the expressions of the C-erbB-2 and VEGF genes using immunohistochemistry. Materials and Methods: Ninety-five patients with NSCLC were involved (60 squamous cell carcinoma and 35 adenocarcinoma). The formalin-fixed paraffin embedded specimens were immunohistochemically stained for C-erbB-2 and VEGF using the avidin-biotin complex method. Results: Positive C-erbB-2 expression was observed more often in adenocarcinomas than squamous cell carcinomas (p<0.05). Although the immunohistochemical expressions of C-erbB-2 and VEGF in non-small-cell lung cancer showed increased tendencies at an advanced stage, the correlation between early and advanced cancers was insignificant. In adenocarcinomas, the expressions of VEGF and C-erbB-2 were significantly (p<0.05). Conclusion: The overexpression fo C-erbB-2 was significantly higher in adenocarcinomas than squamous cell carcinomas, and correlated with the expression of VEGF in adenocarcinomas of the lungs.

The 14-3-3 Gene Function of Cryptococcus neoformans Is Required for its Growth and Virulence

  • Li, Jingbo;Chang, Yun C.;Wu, Chun-Hua;Liu, Jennifer;Kwon-Chung, Kyung J.;Huang, Sheng-He;Shimada, Hiro;Fante, Rob;Fu, Xiaowei;Jong, Ambrose
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.918-927
    • /
    • 2016
  • Cryptococcus neoformans is a life-threatening pathogenic yeast that causes devastating meningoencephalitis. The mechanism of cryptococcal brain invasion is largely unknown, and recent studies suggest that its extracellular microvesicles may be involved in the invasion process. The 14-3-3 protein is abundant in the extracellular microvesicles of C. neoformans, and the 14-3-3-GFP fusion has been used as the microvesicle's marker. However, the physiological role of 14-3-3 has not been explored. In this report, we have found that C. neoformans contains a single 14-3-3 gene that apparently is an essential gene. To explore the functions of 14-3-3, we substituted the promoter region of the 14-3-3 with the copper-controllable promoter CTR4. The CTR4 regulatory strain showed an enlarged cell size, drastic changes in morphology, and a decrease in the thickness of the capsule under copper-enriched conditions. Furthermore, the mutant cells produced a lower amount of total proteins in their extracellular microvesicles and reduced adhesion to human brain microvascular endothelial cells in vitro. Proteomic analyses of the protein components under 14-3-3-overexpressed and -suppressed conditions revealed that the 14-3-3 function(s) might be associated with the microvesicle biogenesis. Our results support that 14-3-3 has diverse pertinent roles in both physiology and pathogenesis in C. neoformans. Its gene functions are closely relevant to the pathogenesis of this fungus.

Milk Fat Globule-Epidermal Growth Factor VIII Ameliorates Brain Injury in the Subacute Phase of Cerebral Ischemia in an Animal Model

  • Choi, Jong-Il;Kang, Ho-Young;Han, Choongseong;Woo, Dong-Hun;Kim, Jong-Hoon;Park, Dong-Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.2
    • /
    • pp.163-170
    • /
    • 2020
  • Objective : Milk fat globule-epidermal growth factor VIII (MFG-E8) may play a key role in inflammatory responses and has the potential to function as a neuroprotective agent for ameliorating brain injury in cerebral infarction. This study aimed to determine the role of MFG-E8 in brain injury in the subacute phase of cerebral ischemia in a rat model. Methods : Focal cerebral ischemia was induced in rats by occluding the middle cerebral artery with the modified intraluminal filament technique. Twenty-four hours after ischemia induction, rats were randomly assigned to two groups and treated with either recombinant human MFG-E8 or saline. Functional outcomes were assessed using the modified Neurological Severity Score (mNSS), and infarct volumes were evaluated using histology. Anti-inflammation, angiogenesis, and neurogenesis were assessed using immunohistochemistry with antibodies against ionized calcium-binding adapter molecule 1 (Iba-1), rat endothelial cell antigen-1 (RECA-1), and bromodeoxyuridine (BrdU)/doublecortin (DCX), respectively. Results : Our results showed that intravenous MFG-E8 treatment did not reduce the infarct volume; however, the mNSS test revealed that neurobehavioral deficits were significantly improved in the MFG-E8-treated group than in the vehicle group. Immunofluorescence staining revealed a significantly lower number of Iba-1-positive cells and higher number of RECA-1 in the periinfarcted brain region, and significantly higher numbers of BrdU- and DCX-positive cells in the subventricular zone in the MFG-E8-treated group than in the vehicle group. Conclusion : Our findings suggest that MFG-E8 improves neurological function by suppressing inflammation and enhancing angiogenesis and neuronal proliferation in the subacute phase of cerebral infarction.

Expression Pattern and Prognostic Significance of Claudin 1, 4 and 7 in Pancreatic Cancer

  • Alikanoglu, Arsenal Sezgin;Gunduz, Seyda;Demirpence, Ozlem;Suren, Dinc;Gunduz, Umut Riza;Sezer, Cem;Yildiz, Mustafa;Yildirim, Mustafa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4387-4392
    • /
    • 2015
  • Background: Tight junctions (TJs) organise paracellular permeability and they have an important role in epithelial and endothelial cell polarity and permanence of barrier function. It has been demonstrated that the Claudin family constitutes an important component of them. In this study, we assessed expression patterns of of Claudin1, 4 and 7 and whether they have any relation with prognosis in patients with pancreatic cancer. Materials and Methods: Expression patterns of Claudin 1,4 and 7 were examined by immunohistochemistry in 25 patients with a histopathological diagnosis of pancreatic cancer using a semiquantitative scoring of the extent and intensity of staining. After grouping the staining scores as low (final score 0-2) and high (final score 3-9) the relation between expression of Claudin 1,4 and 7 and survival was evaluated. Results: There was no significant relation between expression of Claudin 1,4 and 7 and gender and stage. No statistically significant relation was found between Claudin 1 and 4 expression and survival whereas a statistically significant relation was found between decrease in Claudin 7 expression and decrease in survival. Conclusions: Claudins have important functions other than their popular function known as adhesion. Supporting this hypothesis, we found a statistically significant relationship between increased Claudin 7 expression and increased survival time, and this suggests that Claudin 7 may exert different tumorigenic effects in pancreatic cancer other than its well-known adhesion effect.

KCl Mediates $K^+$ Channel-Activated Mitogen-Activated Protein Kinases Signaling in Wound Healing

  • Shim, Jung Hee;Lim, Jong Woo;Kim, Byeong Kyu;Park, Soo Jin;Kim, Suk Wha;Choi, Tae Hyun
    • Archives of Plastic Surgery
    • /
    • v.42 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Background Wound healing is an interaction of a complex signaling cascade of cellular events, including inflammation, proliferation, and maturation. $K^+$ channels modulate the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we investigated whether $K^+$ channel-activated MAPK signaling directs collagen synthesis and angiogenesis in wound healing. Methods The human skin fibroblast HS27 cell line was used to examine cell viability and collagen synthesis after potassium chloride (KCl) treatment by Cell Counting Kit-8 (CCK-8) and western blotting. To investigate whether $K^+$ ion channels function upstream of MAPK signaling, thus affecting collagen synthesis and angiogenesis, we examined alteration of MAPK expression after treatment with KCl (channel inhibitor), NS1619 (channel activator), or kinase inhibitors. To research the effect of KCl on angiogenesis, angiogenesis-related proteins such as thrombospondin 1 (TSP1), anti-angiogenic factor, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), pro-angiogenic factor were assayed by western blot. Results The viability of HS27 cells was not affected by 25 mM KCl. Collagen synthesis increased dependent on time and concentration of KCl exposure. The phosphorylations of MAPK proteins such as extracellular-signal-regulated kinase (ERK) and p38 increased about 2.5-3 fold in the KCl treatment cells and were inhibited by treatment of NS1619. TSP1 expression increased by 100%, bFGF expression decreased by 40%, and there is no significant differences in the VEGF level by KCl treatment, TSP1 was inhibited by NS1619 or kinase inhibitors. Conclusions Our results suggest that KCl may function as a therapeutic agent for wound healing in the skin through MAPK signaling mediated by the $K^+$ ion channel.