• Title/Summary/Keyword: endothelial cell damage

Search Result 82, Processing Time 0.026 seconds

Inhibitory Effects of (-) Epigallocatechin Gallate and Quercetin on High Glucose-induced Endothelial Cytotoxicity

  • Choi Yean Jung;Kwon Hyang Mi;Choi Jung Suk;Bae Ji Young;Kang Sang Wook;Lee Sang Soo;Lee Yong Jin;Kang Young Hee
    • Nutritional Sciences
    • /
    • v.9 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • Functional damage to microvascular endothelial cells by hyperglycemia is thought to be one of the critical risk factor.; in the impaired wound healing seen with diabetes mellitus. It is also thought that oxidative stress plays a significant role in this endothelial cell dysfunction. The present study examined the differential effects of flavonoids on endothelial cell dysfunction under high glucose conditions. Human endothelial cells exposed to 30 mmol/L glucose for 7 d were pre-treated with various flavonoids and pulse-treated with 0.2 mmol/L $H_2O_2$ for 30 min. High glucose markedly decreased cell viability with elevated oxidant generation and nuclear condensation. $H_2O_2$ insult exacerbated endothelial cytotoxicity due to chronic exposure to high glucose. (-)Epigallocatechin gallate and quercetin improved glucose-induced cell damage with the disappearnnce of apoptotic bodies, whereas apigenin intensified the glucose cytotoxicity. In addition, cell viability data revealed that these flavonoids of (-)epigallocatechin gallate and quercetin substantially attenuated both high glucose- and $H_2O_2$- induced dual endothelial damage. These results suggest that (-)epigallocatechin gallate and quercetin may be beneficial agents for improving endothelial cell dysfunction induced by high glucose and may prevent or reduce the development of diabetic vascular complications.

Endothelial cell autophagy in the context of disease development

  • Basheer Abdullah Marzoog
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • Endothelial cells (EC) are the anatomical boundaries between the intravascular and extravascular space. Damage to ECs is catastrophic and induces endothelial cell dysfunction. The pathogenesis is multifactorial and involves dysregulation in the signaling pathways, membrane lipids ratio disturbance, cell-cell adhesion disturbance, unfolded protein response, lysosomal and mitochondrial stress, autophagy dysregulation, and oxidative stress. Autophagy is a lysosomal-dependent turnover of intracellular components. Autophagy was recognized early in the pathogenesis of endothelial dysfunction. Autophagy is a remarkable patho (physiological) process in the cell homeostasis regulation including EC. Regulation of autophagy rate is disease-dependent and impaired with aging. Up-regulation of autophagy induces endothelial cell regeneration/differentiation and improves the function of impaired ones. The paper scrutinizes the molecular mechanisms and triggers of EC dysregulation and current perspectives for future therapeutic strategies by autophagy targeting.

Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction

  • Do, Moon Ho;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.158-164
    • /
    • 2017
  • Methylglyoxal (MGO) is a highly reactive metabolite of glucose which is known to cause damage and induce apoptosis in endothelial cells. Endothelial cell damage is implicated in the progression of diabetes-associated complications and atherosclerosis. Hypericin, a naphthodianthrone isolated from Hypericum perforatum L. (St. John's Wort), is a potent and selective inhibitor of protein kinase C and is reported to reduce neuropathic pain. In this work, we investigated the protective effect of hypericin on MGO-induced apoptosis in human umbilical vein endothelial cells (HUVECs). Hypericin showed significant anti-apoptotic activity in MGO-treated HUVECs. Pretreatment with hypericin significantly inhibited MGO-induced changes in cell morphology, cell death, and production of intracellular reactive oxygen species. Hypericin prevented MGO-induced apoptosis in HUVECs by increasing Bcl-2 expression and decreasing Bax expression. MGO was found to activate mitogen-activated protein kinases (MAPKs). Pretreatment with hypericin strongly inhibited the activation of MAPKs, including P38, JNK, and ERK1/2. Interestingly, hypericin also inhibited the formation of AGEs. These findings suggest that hypericin may be an effective regulator of MGO-induced apoptosis. In conclusion, hypericin downregulated the formation of AGEs and ameliorated MGO-induced dysfunction in human endothelial cells.

Protective Effect of Padina arborescens Extract against High Glucose-induced Oxidative Damage in Human Umbilical Vein Endothelial Cells

  • Park, Mi Hwa;Han, Ji Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • Dysfunction of endothelial cells is considered a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of Padina arborescens extract against high glucose-induced oxidative damage in human umbilical vein endothelial cells (HUVECs). High-concentration of glucose (30 mM) treatment induced cytotoxicity whereas Padina arborescens extract protected the cells from high glucose-induced damage and significantly restored cell viability. In addition, lipid peroxidation, intracellular reactive oxygen species (ROS), and nitric oxide (NO) levels induced by high glucose treatment were effectively inhibited by treatment of Padina arborescens extract in a dose-dependent manner. High glucose treatment also induced the overexpressions of inducible nitric oxide synthase (iNOS), cyclooxygenase- 2 (COX-2) and NF-${\kappa}B$ proteins in HUVECs, but Padina arborescens extract treatment reduced the over-expressions of these proteins. These findings indicate the potential benefits of Padina arborescens extract as a valuable source in reducing the oxidative damage induced by high glucose.

The Effect of Quercetin in Corneal Opacity Induced by Mitomycin-C

  • Lee, Yoon Jeong
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.88-95
    • /
    • 2014
  • This study examined the effects of quercetin on corneal opacity caused by corneal edema by suppressing the damage on corneal endothelial cell, which was induced by mitomycin-C (MMC). In the MMC-treated group, the number of keratocytes was noticeably fewer compared to that of other groups. Although this group showed normal amount of fiber in the corneal stroma, the thickness was shown to be very thick and the alignment of the corneal endothelial cells that worked as the barrier against aqueous humor was irregular. According to such results, it was known that corneal opacity induced by MMC is not caused by proliferation of keratocytes, but by corneal edema triggered by the infiltration of aqueous humor. In the MMC+quercetin and quercetin+MMC-treated groups, the number of keratocytes was higher and polymorphonuclear leukocytes infilteration was lower significantly compared to that of the MMC-treated group. Although the amounts of fiber and endothelioid cell arrangement were normal, there was more space observed in the corneal stroma. Nonetheless, these groups showed significantly lower stromal thickness compared to that of the MMC group. In conclusion, quercetin has the effect on the reduction of corneal opacity caused by corneal edema that work MMC-induced damage to the corneal endothelial cells.

Tea Flavonoids Induced Differentiation of Peripheral Blood-derived Mononuclear Cells into Peripheral Blood-derived Endothelial Progenitor Cells and Suppressed Intracellular Reactive Oxygen Species Level of Peripheral Blood-derived Endothelial Progenitor Cells

  • Widowati, Wahyu;Wijaya, Laura;Laksmitawati, Dian Ratih;Widyanto, Rahma Micho;Erawijantari, Pande Putu;Fauziah, Nurul;Bachtiar, Indra;Sandra, Ferry
    • Natural Product Sciences
    • /
    • v.22 no.2
    • /
    • pp.87-92
    • /
    • 2016
  • Endothelial dysfunction in atherosclerosis is associated with increasing oxidative stress that could be reversed by antioxidant. Therefore epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC) and catechin (C) of tea flavonoids were investigated for their roles in regenerating endothelial cell. Peripheral blood mononuclear cells (PB-MNCs) were isolated, plated and cultured in medium with/without treatment of EGCG, ECG, EGC and C. Results showed that among all EGCG, ECG, EGC and C concentrations tested, $12.5{\mu}mol/L$ was not cytotoxic for peripheral blood-derived endothelial progenitor cells (PB-EPCs). Treatment of EGCG, ECG, EGC or C increased the percentages of CD34, CD133, VEGFR-2 expressions and suppressed hydrogen peroxide-induced percentages of reactive oxygen species (ROS) level in PB-EPCs. Taken together, our current results showed that EGCG, ECG, EGC or C of tea flavonoids could induce differentiation of PB-MNCs into PB-EPCs as well as protect PB-EPCs from oxidative damage by suppresing the intracellular ROS levels.

Acid sphingomyelinase-mediated blood-brain barrier disruption in aging

  • Park, Min Hee;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.111-112
    • /
    • 2019
  • Although many studies have reported that the breakdown of the blood-brain barrier (BBB) represents one of the major pathological changes in aging, the mechanism underlying this process remains relatively unexplored. In this study, we described that acid sphingomyelinase (ASM) derived from endothelial cells plays a critical role in BBB disruption in aging. ASM levels were elevated in the brain endothelium and plasma of aged humans and mice, resulting in BBB leakage through an increase in caveolae-mediated transcytosis. Moreover, ASM caused damage to the caveolae-cytoskeleton via protein phosphatase 1-mediated ezrin/radixin/moesin dephosphorylation in primary mouse brain endothelial cells. Mice overexpressing brain endothelial cell-specific ASM exhibited acceleration of BBB impairment and neuronal dysfunction. However, genetic inhibition and endothelial specific knock-down of ASM in mice improved BBB disruption and neurocognitive impairment during aging. Results of this study revealed a novel role of ASM in the regulation of BBB integrity and neuronal function in aging, thus highlighting the potential of ASM as a new therapeutic target for anti-aging.

Antioxidant Effect of Vitamin E on Vascular Endothelial Cells Damaged by Reactive Oxygen Species (활성산소종으로 손상된 혈관내피세포에 대한 Vitamin E의 항산화 효과)

  • Suk, Seung-Han
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.685-689
    • /
    • 2006
  • In order to examine the injury of vascular endothelial cells related with oxidative stress of reactive oxygen species(ROS), mophological changes of vascular endothelial cells were observed by light microscope after bovine pulmonary vascular endothelial cell line (BPVEC) was treated with 15 uM of hydrogen peroxide. In addition, the effect of vitamin E against ROS-induced oxidative stress was examined by light microscope. In this study, the cell number of BPVEC treated with ROS has significantly decreased than that of control, and the loss of cytoplasmic processes and cell swelling were observed in BPVEC treated with ROS. Whereas, cell number of BPVEC treated with vitamin E has significantly increased than that of BPVEC treated with ROS and also, cytoplasmic processes of BPVEC treated with vitamin E were preserved as control. These findings suggested that not only did ROS induce damage of BPVES by decrease of cell number, loss of cytoplasmic processes and cell swelling, but vitamin E also has protective effect against ROS-induced oxidative stress in cultures of BPVEC.

Effect of Baechu Kimchi Added Ecklonia cava Extracts on High Glucose-induced Oxidative Stress in Human Umbilical Vein Endothelial Cells

  • Lee, Hyun-Ah;Song, Yeong-Ok;Jang, Mi-Soon;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.170-177
    • /
    • 2014
  • Endothelial cell dysfunction is considered to be a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of a baechu kimchi added Ecklonia cava extract (BKE) against high glucose induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced cytotoxicity, whereas treatment with BKE protected HUVECs from high glucose induced damage; by restoring cell viability. In addition, BKE reduced lipid peroxidation, intracellular reactive oxygen species and nitric oxide levels in a dose dependent manner. Treatment with high glucose concentrations also induced the overexpression of inducible nitric oxide synthase, cyclooxygenase-2 and NF-${\kappa}B$ proteins in HUVECs, but BKE treatment significantly reduced the overexpression of these proteins. These findings indicate that BKE may be a valuable treatment against high glucose-induced oxidative stress HUVECs.

Effects of Hydrocortisone on Cardiac Endothelial Cells in Vitro (배양중 심장내피세포에 미치는 Hydrocortisone 의 영향)

  • 정태은
    • Journal of Chest Surgery
    • /
    • v.22 no.1
    • /
    • pp.16-24
    • /
    • 1989
  • To investigate the effects of hydrocortisone on new-born rat cardiac endothelial cells in culture, the endothelial cells were isolated by means of enzyme-cocktail method. The cells were cultivated in Lees modified Dulbeco\ulcorner medium and 10[M or 10[M of hydrocortisone was added to the medium. The cells were harvested or coverglass and processed for thiamin pyrophosphatase reaction and Feulgen reaction. The enzymatic activities of Golgi complex, number of cells and number of large nucleated[more than tetraploid] cells were counted and discussed for their significance. The results were summarized as follows; 1. Hydrocortisone seemed to accelerate the rate of recovery of cardiac endothelial cells from isolation damage. 2. Endothelial cells treated with hydrocortisone revealed strong positive reaction to thiamine pyrophosphatase in early culture and 10 M group had stronger reaction than that of 10 AM group 3. Hydrocortisone had inhibiting effects on endothelial proliferation and the higher the concentration of the reagent was the stronger effects. 4. Hydrocortisone inhibited the appearance of large nucleate cells in endothelial cell population. 5. Hydrocortisone seemed to suppress the nuclear DNA synthesis.

  • PDF