• Title/Summary/Keyword: endosperm starch

Search Result 76, Processing Time 0.026 seconds

Evaluations on the Namil(SA)-flo1, a Floury Japonica Rice Line, for Dry Milling Process to Produce Rice Flour (남일벼 돌연변이 후대 분질계통, Namil(SA)-flo1의 건식제분 적합성 평가)

  • Jeung, Ji-Ung;Shin, Young-Seop
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • Changes in food preferences and dietary habits of Korean prone to decrease consumption of the traditional energy source, rice. The exceeding condition of rice production in Korea is now not only impacting on the profit structure of farmers but also threatening food security. Although there have been several efforts to increase rice consumption rate, by developing various processed foods using rice flour, grain hardness of rice has been the most significant limiting factor. In this study, we addressed the suitability of the Namil(SA)-flo1, a mutant rice line has floury endosperm, in terms of producing rice flour by using dry-milling method, which is lower cost and more eco-friendly than other available methods such as wet-milling. Rice flour of the Namil(SA)-flo1 exhibited superior physico-chemical characteristics to any other check varieties including the wild type, Namil, in terms of distribution of granule sizes and content of damaged starch.

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.

Physicochemical Characteristics and Varietal Improvement Related to Palatability of Cooked Rice or Suitability to Food Processing in Rice (쌀 식미 및 가공적성에 관련된 이화학적 특성)

  • 최해춘
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.39-74
    • /
    • 2001
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s∼1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great, progress and success was obtained in development of high-quality japonica cultivars and qualify evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice caltivars and special rices adaptable for food processing such as large kernel, chalky endosperm aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and torture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak. hot paste and consistency viscosities of viscogram with year difference. The high-quality rice variety “Ilpumbyeo” showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic mcroscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high Probability of determination. The ${\alpha}$ -amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were Ilpumbyeo, Chucheongbyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tongil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, shelved the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogiadation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice bread. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large gram rices showed better suitability for fermentation and brewing. Our breeding efforts on rice quality improvement for the future should focus on enhancement of palatability of cooked rice and marketing qualify as well as the diversification in morphological and physicochemical characteristics of rice grain for various value-added rice food processings.

  • PDF

Antioxidant Activity and Grain Properties of Colored Rice Derived from Insertional Mutagenesis Progenies (벼 종피색 변이체에 대한 항산화 활성 분석과 미립특성)

  • Yi, Gihwan;Lee, Hyun-Suk;Sohn, Jae-Keun;Kim, Kyung-Min
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1628-1636
    • /
    • 2012
  • This study examined the antioxidant activity of the dark purple rice seeds from the rice line, MGI079, derived from insertional mutagenesis. The contents of polyphenolic compounds were 1.3 and 1.9-fold higher in the MGI079-2-1 and MGI079-2-6 rice lines than in the donor cultivar MGI079. Flavonoid contents were 6.4-fold higher in the MGI079-2-1 line. The MGI079-2-1 line showed a 24.4-fold higher activity in DPPH free radical scavenging compared to the MGI079 line. The anthocyanin content of the MGI079-2-6 line was more than 106.4-fold higher than the MGI079 line and 1.4-fold higher than the Heugnam line. Anthocyanin content in colored rice grains was negatively correlated with Hunter's L, a, and b values, with the correlation coefficients of $-5.64^{**}$, $5.21^{**}$ and -1.15, respectively. The grain length/width of a mutant of MGI079 segregated to a medium and bold type compared to the medium type of MGI079. However, the 1,000 grain weight was decreased to 13.6~19.6 g compared to 19.8 g for MGI079. Amylose content of the endosperm was 5.6~23.8% higher than in the MGI079 line. The grain of mutants of MGI079 was distinguished by its starch characteristics. The higher antioxidant activity of the MGI079-2-1 and MGI079-2-6 lines indicated functional characteristics associated with high-value resources, so future breeding should focus on the development of pigments in colored rice in new varieties.

Analysis of Genetic Diversity and Population Structure for Core Set of Waxy and Normal Maize Inbred Lines using SSR Markers (SSR 분자마커를 이용한 찰옥수수 및 종실용 옥수수 자식계통들의 핵심집단에 대한 유전적 다양성 및 집단구조 분석)

  • Sa, Kyu Jin;Kim, Jin-Ah;Park, Ki Jin;Park, Jong Yeol;Goh, Byeong Dae;Lee, Ju Kyong
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.430-441
    • /
    • 2011
  • Maize is divided into two types based on the starch composition of the endosperm in the seed, normal maize(or non-waxy maize) and waxy maize. In this study, genetic diversity and population structure were investigated among 80 waxy maize and normal inbred lines(40 waxy maize inbred lines and 40 normal maize inbred lines) using 50 SSR markers. A total of 242 alleles were identified at all the loci with an average of 4.84 and a range between 2 and 9 alleles per locus. The gene diversity values varied from 0.420 to 0.854 with an average of 0.654. The PIC values varied from 0.332 to 0.838 with an average of 0.602. To evaluate the population structure, STRUCTURE 2.2 program was employed to confirm genetic structure. The 80 waxy and normal maize inbred lines were separated with based on the membership probability threshold 0.8, and divided into groups I, II and admixed group. The 13 waxy maize inbred lines were assigned to group I. The 45 maize inbred lines including 7 waxy maize inbred lines and 38 normal maize inbred lines were assigned to group II. The 22 maize inbred lines with 20 waxy maize inbred lines and 2 normal maize inbred lines were contained in the admixed group. The cluster tree generated using the described SSR markers recognized three major groups at 31.7% genetic similarity. Group I included 40 waxy maize inbred lines and 11 normal maize inbred lines, and Group II included 27 normal maize inbred lines. Group III consist of only 2 normal maize inbred lines. The present study has demonstrated the utility of SSR analysis for the study of genetic diversity and the population structure among waxy and normal maize inbred lines. The information obtained from the present studies would be very useful for designing efficient maize breeding programs in Maize Experiment Station, Kangwon Agricultural Research and Extension Services.

Investigation on Korean Local Maize Lines V. Variabilities of Plant Characters of Multi-eared and Tillered Lines(MET) (재래종 옥수수 수집종에 대한 특성조사 제5보 다수다벽 재래종 옥수수계통의 특성변이)

  • Choe, B.H.;Park, J.S.;Kim, Y.R.;Park, K.Y.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.56-68
    • /
    • 1981
  • A maize line was selected in 1979 among 1000 Korean local maize lines collected in 1977. The selected maize line was characterized by having three to four tillers and eight to 10 ears on each individual plant. The line was assumed to have a great potential as a silage crop. The investigation was conducted as one of the serial studies on the Korean maize collected lines to provide basic information on the genetic variabilities of the multi-eared and tillered (MET) line and on other agronomic characters, prior to use the line as material for future breeding works for silage crop. The MET line and Suwon #19, single cross hybrid, as check variety were planted on May 1, 15 and 30, in three different levels of plant populations. The results obtained were summarized as follows: 1. The genetic variabilities of multi-ear and tillering habits were greater than environmental variabilities. 2. Total dry leaf weight of individual plant of MET line was also significantly higher than that of Suwon #19. 3. The mean number of tillers and ears bearing on the individual plant of MET line varied greatly with plant densities. The number of tillers and ears was on the average 2.9 and 7.0, respectively, when planted in 60cm. by 60cm. 4. The total dry matter and dried stem weight of the individual plant on MET line were comparable to those of Suwon #19. 5. The kernel weight from the individual plant of MET line was 5 to 40% less than that of Suwon #19, depending upon the plant densities. 6. The Kernel to stover ratio was higher for Suwon #19 than for the MET line. (41% to 35%). 7. The MET line had shown first tiller two weeks after planted on May 1. The second and third tillers appeared three to five days after the appearance of the first tiller. 8. The MET line was very specific in tillering habits. All the tillers were borne on the first few nodes of main stem below the soil surface. 9. The tillering habits of MET line were vigorous in the early part of the growing season, but less vigorous in the later part of the growing season. The number of efficient tillers bearing useable ears, was around two to three, when planted in 60cm. by 60cm. 10. The difference of plant height between main stem and first few tillers was around 10cm. 11. The ear size of MET line was around one-third of the major corn belt hybrids. The shape of ear of MET line was conical, with different diameter. 12. The kernel of the MET line was flinty with small soft starch patches on the endosperm part. 13. The 100 kernel weight was around 15gr., which is about one half of the major high yielding hybrids. 14. The ear height of MET line was comparatively higher than that of Suwon #19. 15. Significantly high and positive phenotypic correlation coefficients were obtained among major plant characters. 16. The growth rate of MET line was slower than that of Suwon #19. 17. MET line and Suwon #19 were both heavily infected with black streaked mosaic virus.

  • PDF