• Title/Summary/Keyword: endoplasmic reticulum (ER) stress

Search Result 171, Processing Time 0.024 seconds

Neuroprotective Effect of Hwangryunhaedok-tang Against Glucose-deprivation Induced Cytotoxicity in PC-12 Cells (Glucose-deprivation으로 유발된 PC-12 cell의 세포 고사에 대한 황연해독탕(黃連解毒湯)의 보호 효과)

  • Kim, Hye-Yoon;Shin, Sun-Ho;Lee, In
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1462-1469
    • /
    • 2008
  • The purpose of the study was to confirm what effect HRHDT treatment had on cell extinction by damage of endoplasmic reticulum induced to PC-12 cell damage by glucose deprivation. The study confirmed what effect it had on forming the condition of glucose deprivation within a culture fluid of PC-12 cell and on a nerve cell's survival rates and tested whether HRHDT could prevent extinction of PC-12 cell by glucose deprivation. Also, the study confirmed what effect HRHDT treatment had on the emitted quantity of LDH by glucose deprivation. To examine PC-12 cell's behavioral change under the condition of glucose deprivation and a protective effect of HRHDT on the change, the study observed PC-12 cell's behavioral change with a microscope. Also, the study confirmed density of calcium ion within cells followed by a culture time in the condition of glucose deprivation with FACS and confirmed what effect HRHDT treatment had on the above density of calcium ion within cells. Finally, the study carried out the western blot and confirmed what effect HRHDT treatment had on revelation of GRP 78 and CHOP protein and a segmental type of aspase 12. In this study, HRHDT rescued PC-12 cells from glucose deprivation-induced cell death. HRHDT also prevents the LDH release, Ca++ accumulation, and morphological change, which was associated with the ER stress. Furthermore, HRHDT reduced the expression of ER chaperone (Grp78 and CHOP) proteins by glucose deprivation in PC-12 cells. These results suggest that HRHDT might provide a useful therapeutic strategy in treatment of the neurodegenerative diseases caused by glucose deprivation injuries.

S-Allyl-L-cysteine, a Garlic Compound, Selectively Protects Cultured Neurons from ER Stress-induced Neuronal Death

  • Ito Yoshihisa
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2004.11a
    • /
    • pp.124-128
    • /
    • 2004
  • We have assessed amyloid ${\beta}-peptide$ $(A{\beta})-induced$ neurotoxicity in primary neurons and organotypic hippocampal slice cultures (OHC) in rat. Exposing cultured hippocampal and cerebellar granule neurons to $A{\beta}$ resulted in a decrease of MTT reduction, and in destruction of neuronal integrity. Treatment of these neurons with tunicamycin, an inhibitor of N-glycosylation in the endoplasmic reticulum (ER), also decreased MTT reduction in these neurons. S-allyl-L-cysteine (SAC), an active organosulfur compound in aged garlic extract, protected hippocampal but not cerebellar granule neurons against $A{\beta}$- or tunicamycin-induced toxicity. In the hippocampal neurons, protein expressions of casapse-12 and GRP 78 were significantly increased after $A{\beta}_{25-35}$ or tunicamycin treatment. The increase in the expression of caspase-12 was suppressed by simultaneously adding $1{\mu}M$ SAC in these neurons. In contrast, in the cerebellar granule neurons, the expression of caspase-12 was extremely lower than that in the hippocampal neurons, and an increase in the expression by $A{\beta}_{25-35}$ or tunicamycin was not detected. In OHC, ibotenic acid (IBO), a NMDA receptor agonist, induced concentration-dependent neuronal death. When $A{\beta}$ was combined with IBO, there was more intense cell death than with IBO alone. SAC protected neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by IBO in combination with $A{\beta}$, although there was no change in the CA1 area. Although protein expression of casapse-12 in the CA3 area and the DG was significantly increased after the simultaneous treatment of AI3 and IBO, no increase in the expression was observed in the CA1 area. These results suggest that SAC could protect against the neuronal cell death induced by the activation of caspase-12 in primary cultures and OHC. It is also suggested that multiple mechanisms may be involved in neuronal death induced by AI3 and AI3 in combination with IBO.

  • PDF

A Bombyx mori Transcription Factor, ATFC Binds Directly to the UPRE of Molecular Chaperones

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kwon, O-Yu;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.133-137
    • /
    • 2003
  • Cells respond to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing transcription of genes encoding molecular chaperones and folding enzymes. The information is transmitted from the ER lumen to the nucleus by intracellular signaling pathway, called the unfolded protein response (UPR). In Saccharomyces cerevisiae, such induction is mediated by the cis-acting unfolded response element (UPRE) which has been thought to be recognized by Hac1p transcription factor. We cloned the ATFC gene showing similarity with Hac1p, and then examined to determine whether ATFC gene product specifically binds to UPRE by electrophoretic mobility shift assays. ATFC gene product displayed appreciable binding ${to ^{32}}P-labelled$ UPRE. Therefore, we concluded that ATFC represents a major component of the putative transcription factor responsible for the UPR leading to the induction of ER-localized stress proteins.

PEP-1-paraoxonase 1 fusion protein prevents cytokine-induced cell destruction and impaired insulin secretion in rat insulinoma cells

  • Lee, Su Jin;Kang, Hyung Kyung;Choi, Yeon Joo;Eum, Won Sik;Park, Jinseu;Choi, Soo Young;Kwon, Hyeok Yil
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.538-543
    • /
    • 2018
  • Pancreatic beta cell destruction and dysfunction induced by cytokines is a major cause of type 1 diabetes. Paraoxonase 1 (PON1), an arylesterase with antioxidant activity, has been shown to play an important role in preventing the development of diabetes in transgenic mice. However, no studies have examined the anti-diabetic effect of PON1 delivered to beta cells using protein transduction. In this study, we expressed the cell-permeable PON1 fused with PEP-1 protein transduction domain (PEP-1-PON1) to investigate whether transduced PEP-1-PON1 protects beta cells against cytokine-induced cytotoxicity. PEP-1-PON1 was effectively delivered to INS-1 cells and prevented cytokine-induced cell destruction in a dose-dependent manner. Transduced PEP-1-PON1 significantly reduced the levels of reactive oxygen species (ROS) and nitric oxide (NO), DNA fragmentation, and expression of inflammatory mediators, endoplasmic reticulum (ER) stress proteins, and apoptosis-related proteins in cytokine-treated cells. Moreover, transduced PEP-1-PON1 restored the decrease in basal and glucose-stimulated insulin secretion induced by cytokines. These data indicate that PEP-1-PON1 protects beta cells from cytokine-induced cytotoxicity by alleviating oxidative/nitrosative stress, ER stress, and inflammation. Thus, PEP-1-mediated PON1 transduction might be an effective method to reduce the extent of destruction and dysfunction of pancreatic beta cells in autoimmune diabetes.

Effects of Cortisol on Endoplasmic Reticulum-stress, Apoptosis, and Autophagy in Mouse Muscle C2C12 Cells (생쥐 근육세포에서 코티졸이 세포질세망 스트레스, 자연 세포사멸과 자가포식에 미치는 영향)

  • Shin, Donghyun;Kim, Kyoung Hwan;Lee, Ji Hyun;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1127-1131
    • /
    • 2018
  • Cortisol, a steroid hormone, functions within metabolism, immune response, and stress. Intense or prolonged physical exercise increases cortisol levels to enhance the gluconeogenesis pathway and stabilize blood glucose level. However, cortisol also exerts a negative impact on muscle function and creates a stressful environment in skeletal muscle cells. The present study investigated the function of cortisol as a stress hormone. To examine the effect of the exercise-induced hormone cortisol on skeletal muscles, C2C12 cells were cultured and treated with cortisol at different concentrations. As a result, we found that the morphology of C2C12 changed remarkably with 5 ug/ml cortisol treatment. Western blot analysis was conducted to learn whether ER-stress and autophagy were induced. We found that the expression ratio of LC3I/LC3II decreased and BiP expression increased after cortisol treatment. In addition, immunocytochemistry analysis with IER3 antibody clearly showed that apoptosis is induced after 12-hour cortisol treatment. These results indicate that cortisol treatment could induce apoptosis, ER-stress, and autophagy in muscle cells. This study would provide valuable information in the study of the effects of exercise on skeletal muscle cells and the development of additives to reduce cortisol stress.

FMDV 2C Protein of Foot-and-mouth Disease Virus Increases Expression of Pro-inflammatory Cytokine TNFα via Endoplasmic Reticulum Stress (구제역바이러스의 FMDV 2C 단백질은 소포체 스트레스를 통해서 염증 유도 사이토카인 TNFα의 발현을 증가시킴)

  • Kang, Hyo Rin;Seong, Mi So;Nah, Jin Ju;Ryoo, Soyoon;Ku, Bok Kyung;Cheong, JaeHun
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.285-290
    • /
    • 2020
  • Foot-and-mouth disease virus (FMDV), a member of the genus Aphthovirus in the Picornaviridae family, affects wild and domesticated ruminants and pigs. FMDV causes various clinical symptoms, including severe inflammation in infected tissue. Genome RNA of FMDV shows a positive single-strand chain approximately 8.3 kb long and encodes a single long open reading frame (ORF). The ORF is translated into structural and non-structural proteins by viral proteases. The FMDV 2C protein is one of the non-structural proteins encoded by FMDV and plays a critical role in FMD pathogenesis, including inflammation, apoptosis, and viral replication. In this study, we examined whether FMDV 2C induces intracellular expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). FMDV 2C expression in pig IBRS-2 cells increased mRNA and protein expression of TNFα at the transcriptional level via activation of TNFα promoter. Treatment with 4-phenylbutyric acid, an endoplasmic reticulum (ER) stress reducer, decreased TNFα expression induced by FMDV 2C. Activating transcription factor 4 (ATF4), a transcription factor mediating ER stress response, induced transactivation of TNFα promoter and expression of mRNA and protein of TNFα. However, the dominant negative mutant of ATF4 did not induce FMDV 2C-mediated TNFα expression. The results indicate that FMDV 2C protein increases clinical inflammation via ATF4-mediated TNFα expression and is associated with ER stress induction.

Supplement of tauroursodeoxycholic acid in vitrification solution improves the development of mouse embryos

  • Lin, Tao;Lee, Jae-Eun;Shin, Hyun-Young;Oqani, Reza;Kim, So-Yeon;Jin, Dong-Il
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.575-580
    • /
    • 2016
  • This study was performed to determine whether supplementation of tauroursodeoxycholic acid (TUDCA), an endoplasmic reticulum (ER) stress inhibitor, during vitrified cryopreservation enhances the development of frozen mouse embryos. Mouse 8-cell stage embryos were collected and exposed to a cryoprotectant solution containing TUDCA or TM (tunicamycin, an ER stress inhibitor) at room temperature and stored in liquid nitrogen following vitrification. The final concentration of TUDCA or TM was $50{\mu}M$. The survival and development rates of mouse 8-cell stage embryos exposed to TUDCA- or TM-containing solutions at room temperature or stored in liquid nitrogen following vitrification were measured. There were no significant differences in survival rate and blastocyst formation rate among control, TUDCA, and TM groups after embryos were exposed to vitrification solutions at RT. When mouse 8-cell stage embryos were treated with TUDCA or TM and then stored in liquid nitrogen, the survival rates of control and TUDCA groups were significantly higher than for the TM group. Blastocyst formation rate of the TUDCA group following in vitro culture was significantly higher than that in control or TM groups. The TM group showed a lower (p < 0.05) blastocyst formation rate than the other two groups. Our results indicate that TUDCA supplementation during cryopreservation of mouse embryos could enhance their development capacity.

Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells

  • Lee, Geum-A;Choi, Kyung-Chul;Hwang, Kyung-A
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.503-511
    • /
    • 2018
  • Triclosan (TCS) and bisphenol A (BPA) are endocrine-disrupting chemicals that interfere with the hormone or endocrine system and may cause cancer. Kaempferol (Kaem) and 3,3'-diindolylmethane (DIM) are phytoestrogens that play chemopreventive roles in the inhibition of carcinogenesis and cancer progression. In this study, the influence of TCS, BPA, Kaem, and DIM on proliferation and apoptotic abilities of VM7Luc4E2 breast cancer cells were examined. MTT assay revealed that TCS ($0.1-10{\mu}M$), BPA ($0.1-10{\mu}M$) and E2 ($0.01-0.0001{\mu}M$) induced significant cell proliferation of VM7Luc4E2 cells, which was restored to the control (0.1% DMSO) by co-treatment with Kaem ($30{\mu}M$) or DIM ($15{\mu}M$). Reactive oxygen species (ROS) production assays showed that TCS and BPA inhibited ROS production of VM7Luc4E2 cells similar to E2, but that co-treatment with Kaem or DIM on VM7Luc4E2 cells induced increased ROS production. Based on these results, the effects of TCS, BPA, Kaem, and DIM on protein expression of apoptosis and ROS production-related markers such as Bax and Bcl-xl, as well as endoplasmic reticulum (ER) stress-related markers such as $eIF2{\alpha}$ and CHOP were investigated by Western blot assay. The results revealed that TCS, and BPA induced anti-apoptosis by reducing ROS production and ER stress. However, Kaem and DIM effectively inhibited TCS and BPA-induced anti-apoptotic processes in VM7Luc4E2 cells. Overall, TCS and BPA were revealed to be distinct xenoestrogens that enhanced proliferation and anti-apoptosis, while Kaem and DIM were identified as natural chemopreventive compounds that effectively inhibited breast cancer cell proliferation and increased anti-apoptosis induced by TCS and BPA.

Upregulation of Kruppel-like Factor 4 Gene expression by Allomyrina dichotoma Hemolymph in the INS-1 Pancreatic β-cells

  • Kwon, Kisang;Suh, Hyun-Woo;Kim, Hong Geun;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.26 no.1
    • /
    • pp.37-41
    • /
    • 2020
  • The hemolymph of Korean rhinoceros Allomyrina dichotoma consists of blood and lymph in which various kinds of proteins function physiologically. We have previously demonstrated that A. dichotoma hemolymph has the potential to treatment and prevent diabetes through activating transcription factor 3-gene (ATF3) regulation. In this study, we investigate the expression of Kruppel-like factor 4 (KLF4) in A. dichotoma hemolymph-treated INS-1 pancreatic β-cells. The new findings show that A. dichotoma hemolymph, which upregulates KLF4 gene expression in a dose-dependent and time-dependent manner. In addition, hemolymph combine with mild endoplasmic reticulum (ER) stress, which also differentially regulates KLF4 gene expression. These results may provide insights to KLF4 gene-related disease therapies through KLF4 gene regulation.

Elevated level of PLRG1 is critical for the proliferation and maintenance of genome stability of tumor cells

  • Hyunji Choi;Moonkyung Kang;Kee-Ho Lee;Yeon-Soo Kim
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.612-617
    • /
    • 2023
  • Pleiotropic regulator 1 (PLRG1), a highly conserved element in the spliceosome, can form a NineTeen Complex (NTC) with Prp19, SPF27, and CDC5L. This complex plays crucial roles in both pre-mRNA splicing and DNA repair processes. Here, we provide evidence that PLRG1 has a multifaceted impact on cancer cell proliferation. Comparing its expression levels in cancer and normal cells, we observed that PLRG1 was upregulated in various tumor tissues and cell lines. Knockdown of PLRG1 resulted in tumor-specific cell death. Depletion of PLRG1 had notable effects, including mitotic arrest, microtubule instability, endoplasmic reticulum (ER) stress, and accumulation of autophagy, ultimately culminating in apoptosis. Our results also demonstrated that PLRG1 downregulation contributed to DNA damage in cancer cells, which we confirmed through experimental validation as DNA repair impairment. Interestingly, when PLRG1 was decreased in normal cells, it induced G1 arrest as a self-protective mechanism, distinguishing it from effects observed in cancer cells. These results highlight multifaceted impacts of PLRG1 in cancer and underscore its potential as a novel anti-cancer strategy by selectively targeting cancer cells.